
Metadata Test Harness Solution Architecture

Metadata Test Harness
Solution Architecture

1/20/12

Wang Di

Bryon Neitzel

Eric Barton

Revision History
Author Ver Date Change
Wang Di <di.wang@whamcloud.com> 0.1 2011/08/08 Original version
Wang Di <di.wang@whamcloud.com> 0.2 2011/08/15 Update command-line interface, edits
Bryon Neitzel <bryon@whamcloud.com> 0.3 2011/08/10 Edits for clarity
Eric Barton <eeb@whamcloud.com> 0.4 2011/08/15 Clarify test cases, update interface, edits
Andreas Dilger <adilger@whamcloud.com> 0.5 2011/08/16 Changes to interface options
Wang Di <di.wang@whamcloud.com> 0.6 2011/08/17 Update command with test_xxx (suggested by

Andreas)

Introduction
The investigation of Lustre MDS performance issues at scale currently requires the use of a large
compute cluster like ORNL’s Jaguar system. The cost and inconvenience of diverting computing
resources normally engaged full time in production to filesystem development is unacceptable. This
paper describes an alternative approach that exercises the MDS stack directly.

1/20/12 1

Metadata Test Harness Solution Architecture
The Lustre team has previously developed tools such as obdfilter-survey, which tests OSTs directly on
the OSS node without requiring connected clients. This tool uses the echo_client module, which
attaches to the OSS stack to inject I/O operations at the obdfilter layer in the OSS.
We propose to implement analogous functionality for the MDS stack. This will generate load directly
on the MDS as if driven by a large client cluster. For the purposes of this document the tool will be
referred to as the md-survey tool. This will include modifications to the echo_client kernel module and
to the lctl utility, which will in turn be driven by a performance survey script.

Solution Requirements
Create metadata test loads with no client nodes.
The md-survey tool will run directly on the MDS. It will generate a similar meta-data performance load
on the MDS stack as is observed in full-scale client testing and drive the MDS to saturation. Three
classes of operation are expected on files and directories.

• Open-create/mkdir
• Lookup/getattr/setattr
• Unlink/rmdir

These operations will be run by a variable number of concurrent threads and occur in a variable number
of directories such that at one extreme, all threads execute in the same directory and at the other
extreme, all threads execute in a private directory.
It will be possible to run md-survey with at least 4096 concurrent, which exceeds the number of MDS
service threads used in production at large Lustre installations.

Exercise different layers of the metadata stack.
The md-survey tool should be able to inject tests at different levels of the MDS stack, so that
performance issues at these different levels can be isolated, specifically:

• At the OSD API to measure OSD performance.
• At the MDD API to include MDD stack overhead.
• On top of the MDT layer to include the whole MDS stack.

While Whamcloud will anticipate this requirement in its implementation, the scope of this project will
be limited to reproducing the performance issues previously seen in full scale testing. Whamcloud
therefore proposes to start by targeting the MDD API since this will exercise full namespace operations
and underlying filesystem code and hardware without the overhead and complexity of generating
synthetic RPC requests. Tests that target the OSD API and the MDT layer will be implemented at a
later time, unless required to replicate performance pathologies observed at full scale.

Solution Proposal
The lctl utility currently implements multi-threaded I/O tests using ioctl() to call into the echo_client
kernel module. The obdfilter-survey shell script invokes lctl to iterate over different test types and
parameters and collect results to build up a comprehensive picture of how the stack being exercised
performs over a wide range of conditions.

1/20/12 2

Metadata Test Harness Solution Architecture
Whamcloud proposes to implement md-survey using as much existing infrastructure as is appropriate.
Specifically, the existing lctl/echo_client will be extended to include the metadata tests listed below, and
a new md-survey script will be written to drive them.
All MDD-level metadata tests implemented in lctl will take the following parameters:

• -d parent_basedir
-D parent_dircount
These specify the number of directories in which to perform tests and their names. If the
parent_dircount parameter is omitted, a single directory will be used. Otherwise the tests are
spread over the given number of subdirectories designated by appending a numeric suffix to
parent_basedir. Threads are assigned to directories in round-robin order.

• -b child_base_id
This specifies the base name of the files or directories the tests will operation on. A numeric ID
is appended to prevent name collisions on tests by concurrent threads.

• -n count | -t time
These effectively specify how many test operations in total will be performed. Specifying count
sets the number of operations to perform in each test thread. Alternatively, specifying time
causes threads to run the given number of seconds.

The following lctl MDD-level metadata tests will be implemented:
• lctl test_create –c stripe_count <generic-parameters>

This test creates regular files with the given mode and number of stripes. Specifying a
stripe_count of 0 skips creating OST objects and associated overhead.

• lctl test_destroy <generic-parameters>
This test deletes the files from the parent directories.

• lctl test_mkdir <generic-parameters>
This test creates subdirectories in the parent directories instead of regular files.

• lctl test_rmdir <generic-parameters>
This test removes the subdirectories from the parent directories.

• lctl test_lookup <generic-parameters>
This test performs simple lookups that verify whether a file or directory exists.

• lctl test_getattr <generic-parameters>
This test effectively does a stat(2) on the files or directories.

• lctl test_setattr -m mode <generic-parameters>
This test sets attributes on the test files. The -m mode option sets the file permissions to the
specified mode to simulate chmod(2).

• lctl test_setxattr –x attr_size <generic-parameters>
The -x attr_size option stores an artificial attribute of attr_size bytes on each file. Specifying
attr_size of 0 removes the artificial attribute from each file, if it exists.

1/20/12 3

	Create metadata test loads with no client nodes.
	Exercise different layers of the metadata stack.

