Statahead and AGL

Traversing directory sequentially, like “Is -1”, “du”, “find”, are often used system
commands. To process these commands, Lustre client will trigger several RPCs
(lookup/getattr, getxattr, glimpse size, and etc) for each file under the directory.
Originally, these RPCs were serial and synchronous, so the performance was bad.
[t is quite necessary to improve traversing directory sequentially to make these
frequently used system commands to run efficiently.

1. Background

In fact, to improve the performance of traversing large directory sequentially,
Lustre introduced statahead since 2007. This is the outline for original statahead
in Lustre:

A
Statahead control ()

Directory Page Alsyml: get:attnl reqhestls
! ! | 1 |

()

o @ i &

T 1 T 1 T T
Dcache Asyn'c ge‘t.atti' ref)lies!
] I] 1 f |

1 | 1 | 1 1

As shown, there are three blue color threads: traversing thread, statahead thread
and portal RPC daemon. The process is like this:

At the beginning of traversing directory, the traversing thread activates
the statahead thread.

Then the statahead thread pre-fetches directory pages, scans each item in
them, and pushes asynchronous getattr RPCs into the queue for MDS side
attributes.

And then the portal RPC daemon scans such queue, and sends them to
MDS one by one without waiting.

On MDS side, it handles these asynchronous getattr RPCs, grants locks
and returns related attributes to client.

For the statahead thread, it also scans asynchronous getattr RPC reply
queue, processes them one by one, builds related inode and dentry,
aliases them, and modifies dcache.

With these cached information, the traversing thread can find what it
wants locally without communication with MDS.

Because the three threads can run in parallel, most of the time for handling
synchronous getattr RPCs are hidden by the asynchronous getattr RPCs pipeline,
so the performance is improved.

Generally, the original statahead could work, but there were some defects in
original design: when statahead thread processes asynchronous getattr RPC
reply, it builds related inode/dentry, aliases the dentry with the inode, and adds
the dentry into dcache. But at that time, it maybe conflict with other VFS
operations, such as create, and confuse the dcache and other VFS operations. It is
difficult to control such race condition. So we have to disable statahead by
default on Lustre-1.8.

On the other hand, please note the lower-left corner of the schematic: for regular
striped file, after finding the dentry/inode, the traversing thread will trigger
synchronous glimpse size RPCs to OSTs for size information. Original statahead
doesn’t cover these RPCs. It should be improved.

2. Functional specifications

We want to resolve two main issues for improving the performance of traversing
directory sequentially: one is the race condition between statahead thread and
other VFS operations, the other is to replace synchronous glimpse size RPCs
from client to OSTs by pipeline asynchronous glimpse lock RPCs.

2.1. Statahead local dcache

The main purpose of statahead is to save the RPCs (to MDS) of traversing thread
by pre-fetching files attributes (by statahead thread) from MDS asynchronously.
These attributes are related with file’s inode, not dentry. But only pre-fetching
files attributes is not enough, it should make these pre-fetched files are visible to
the traversing thread. For that, the statahead thread builds the dentry, aliases the
dentry with the inode, and adds the dentry into dcache. But the statahead thread
breaks some VFS lock/semaphore mechanism when aliases the dentry with the
inode, and adds the dentry into dcache. Because, to avoid possible deadlock
between the traversing thread and the statahead thread, the statahead thread
cannot obtain some parent’s lock/semaphore. That is why conflict with other
VFS operations.

In fact, there is another way to make these pre-fetched files visible to the
traversing thread: statahead local dcache.

When traverses directory sequentially, the statahead maintains a small cache
against the parent directory. For each pre-fetched files, the statahead thread
builds/updates related inode, and records the inode together with the file’s
name and ldlm lock handle (without holding ldIm lock reference) as one item in
the statahead local cache (for multi-linked file, there are multiple items for each

<name, inode, handle> triples). The statahead thread neither builds dentry, nor
aliases dentry with inode, has nothing related with global dcache.

When the traversing thread lookup/revalidate some dentry, it will search parent
directory’s statahead local dcache. If finds, the traversing thread verifies whether
the cached ldlm lock handle is still valid or not. If yes, then can alias the dentry
(created by VFS) with the inode and adds/rehashes the dentry in global dcache.
Since the traversing thread triggers lookup/revalidate through VFS layer, it must
follow VFS lock/semaphore mechanism, and will not conflict with other VFS
operations.

The statahead local dcache only exists during the traversing directory
sequentially. It is initialized when traversing started, and finalized when
traversing finished.

2.1.1. Statahead windows size

Means how many files can be pre-fetched by the statahead thread ahead of the
traversing thread. We do not want to per-fetch too much files, because statahead
is based on prediction. If prediction is wrong, then pre-fetched files are unless.
On the other hand, more pre-fetched files means more ldlm locks cached on
client, once the cached ldlm locks count exceeds some limit, some pre-fetched
ldlm lock (but not used by the traversing thread) will by dropped by the client.
The statahead windows size is adjustable. The proc interface “statahead_max” is
used for that. You can modify the statahead windows size by:

echo xxx > /proc/fs/lustre/Illite/${FSNAME}/statahead_max
or
Ictl set_param -n llite.${FSNAME}.statahead_max xxx

If “statahead_max” is 0, then statahead will be disabled. Otherwise, the max
statahead windows size will be “xxx”. The default value is 32.

2.1.2. Query efficiency

The statahead thread is the local dcache producer, for each asynchronous getattr
RPC reply, a cache item is added into the statahead local dcache. The traversing
thread is the statahead local dcache consumer, after each lookup/revalidate
cache hitting (as long as name matched, then means the prediction of traversing
behavior is right, in spite of cached ldlm lock handle valid or not), corresponding
cache item is deleted from the statahead local dcache. So the statahead local
dcache size depends on the real statahead windows size. It will almost keep the
same size as the real statahead windows size. So by default, the statahead local
dcache size is very small. On the other hand, to improve the performance of
searching in the statahead local dcache, the statahead local dcache is organized
as 32 hash buckets. So normally, under default case, the average compared items
count for searching in the statahead local dcache is about 1, quite efficient.

2.2. Asynchronous glimpse lock

To hide the time of handling synchronous glimpse size RPCs for traversing
directory sequentially, we introduce asynchronous glimpse lock RPC to pre-fetch
file size from OSTs, called AGL. The basic idea for AGL is as following:

* Atthe beginning of traversing directory, the AGL thread is activated.

* When the statahead thread builds/updates inodes and adds them into the
statahead local dcache, for regular striped files, it also pushes their inodes
into the AGL pipeline.

* The AGL thread scans the AGL pipeline, for each item in it, if no cached
lock, pushes asynchronous glimpse RPCs into the queues for size /blocks
information ahead of the traversing thread using it.

* And then the ptlrpcd threads scan their queues, and send AGL RPCs to
OSTs asynchronously without waiting.

* For OST, if there is no conflicting lock held by other, it will grant lock to
client together with size information; otherwise no glimpse callback to
the conflicting lock holder, the traversing thread will process this case by
itself later.

* On client side, if glimpse lock is granted, then caches size information.
Otherwise, if OST does not grant lock, or the granted lock is cancelled
before the traversing thread using it, then the traversing thread will
trigger normal synchronous glimpse size RPCs as original stat does.

To make sure AGL doesn’t change original glimpse semantics, once conflicting
lock held by other, related AGL RPC is useless. Such additional AGL RPCs may
affect the performance a bit, but AGL works well for large directories, since
stat/read cases are more common than writes.

2.2.1. LDLM_FL_BLOCK_NOWAIT

Normally, for the synchronous glimpse size RPC, if OST finds someone holds the
conflicting lock against the request, it will send glimpse callback RPC to the
conflicting lock holder to query the latest size information. For the client holding
the conflicting lock, when it receives the glimpse callback RPC, it will return the
latest size information, and if the conflicting lock has not been used for some
time (10 seconds), it will release such lock.

But for AGL case, above glimpse callback mechanism does not work. Similar as
statahead, AGL is based on prediction, it may be wrong. AGL should guarantee
the size information cached on the client is valid, in spite of whether the size user
is the traversing thread or not. There is an uncontrolled interval between the
AGL RPCs replied and the size user accessing size information. If no related ldlm
lock granted and cached, the size user cannot believe the size on client. The size
user has to fetch size information from OSTs by itself. So for AGL, if OST finds
conflicting lock held by other, sending glimpse callback to the conflicting lock
holder cannot help much, because the holder may be still using the lock, or the
lock unused time is less than 10 seconds.

The AGL RPC set “LDLM_FL_BLOCK_NOWAIT” flag to tell the OST that if someone
holds conflicting lock against the AGL request, then do not send glimpse callback
to the conflicting lock holder.

2.2.2. CLIO lock state machine changes

To support the AGL thread to dispatch AGL RPCs ASAP, we need to adjust CLIO
lock state machine as following:

¢ Allow to call unuse() against the cl_lock in “CLS_ENQUEUED” state.

For each striped file, the AGL thread just pushes the AGL RPCs into related
ptlrpcd threads sets, without waiting for the RPCs replies. When the AGL
thread exits CLIO lock processing for some file with unuse() called,
related AGL RPC may be not sent/replied yet, and related cl_lock is in
“CLS_ENQUEUED” state.

* Re-trigger glimpse size RPC against the cl_lock in “CLS_ENQUEUED” state.
As described above, for OST, if someone holds conflicting lock against the
AGL request, the OST will not send glimpse callback to the conflicting lock
holder. It is the traversing thread duty to process such case. When the
traversing thread accesses some file size/block information, it maybe find
the cl_lock (created by the AGL thread) in “CLS_ENQUEUED” state, then
the traversing thread needs to wait() the AGL RPC reply. In the wait()
processing, if the AGL RPC is replied without glimpse lock granted by the
OST, then the traversing thread re-triggers normal glimpse size RPC to
the OST against the cl_lock in “CLS_ENQUEUED” state.

¢ 0SClock upcall for AGL
Because the AGL thread maybe exits CLIO lock processing before the AGL
RPC reply, it is necessary to hold user reference count on the cl_lock to
prevent to be cancelled/deleted by unuse() when the traversing thread
exits CLIO lock processing for the file. For normal glimpse size RPC, the
0SC lock upcall will signal the RPC sponsor to change the cl_lock state. But
for AGL case, its sponsor (the traversing thread) maybe exits the CLIO
lock processing already. So original signal mechanism maybe not work. So
the OSC lock upcall will call unuse() to change the cl_lock state according
to the RPC reply (glimpse lock granted or not) and release the user
reference count.

2.2.3. AGL control interface

The AGL can be controllable by the proc interface “statahead_agl” as following:
echo N > /proc/fs/lustre/llite/${FSNAME}/statahead_agl

or

Ictl set_param -n llite.${FSNAME}.statahead_agl N

If “N” is zero, the AGL is disabled; otherwise the AGL is enabled. On the other
hand, AGL is affected by statahead. Because the inodes processed by AGL are
build by the statahead thread. That means the statahead thread is the AGL
pipeline input. So if statahead is disabled, then the AGL is disabled by force.

2.3. Outline for new statahead and AGL

T

T y T g "
1 1 | | 1 |
Directory Page Alsymli getlattnl req:uestls
1

Statahead control

S:tata:heat:i loc%al d:caclzle
/ I 1 1 1 1 1
:8-1 5

E- b B 5% X 8
! As'ync'glm}pselrequeslts !

1 1 | 1 1 |]
: Async getalttr ll'epllles :
1

I
I
1
1 [1 1 1 1 1

As shown above, the elements marked as right blue color are new introduced.
2.3.1. Double pipelines

Before introducing AGL, there is only single pipeline between the traversing
thread and the statahead thread to accelerate traversing directory sequentially.
But now, there are two pipelines for the accelerating:

* Statahead pipeline
Between the traversing thread and the statahead thread, driven by the
statahead thread for asynchronous getattr RPCs.

* AGL pipeline
Between the statahead thread and the AGL thread, driven by the AGL
thread for asynchronous glimpse lock RPCs.

Ideally, the double pipelines run fully, and drive low layer multiple ptlrpcd
threads efficiently. Then the traversing thread, the statahead thread, the AGL
thread, and multiple ptlrpcd threads can run in parallel, most the time of
handling synchronous getattr RPCs and synchronous glimpse size RPCs are
hidden by the double pipelines. So the performance of traversing directory

sequentially is much improved. As for the detailed test results, please refer to the
presentation “Lustre Metadata Performance Improvements”, which was made at
LUG 2011 at Orlando.

