
High Level Design for Aggregate Stat

Fan Yong

2010-10-10

0.1. INTRODUCTION

0.1 Introduction

When using Lustre under high latency network environment (like WAN), the perfor-
mance of traversing large directory (like “ls -l”, hereinafter the “traversing thread”) is
so bad as to be almost intolerable. There are test results from customer:

Time for “ls –l” a directory with 100K files (single stripe)
Local: 16.7 seconds
Remote with 2.5 ms latency: 286 seconds
Remote with 35 ms latency: 3528 seconds

Consider the remote operation, the traversing time is approximately equal to “RPC_latency
* item_count”. We can conclude that most of the time is wasted on such RPC latency.
There are several possible solutions for improving such traversing performance:

1. Decrease network latency

If we could control such network latency, such as try different router(s), it maybe
much helpful. Unfortunately, for most cases, especially under WAN environ-
ment, the network latency is affected by many facets, and it is almost impossible
to be controlled by end user.

2. Metadata read-ahead and fully parallel process

Lustre uses statahead for metadata read-ahead, if without such feature, the above
performance will be 40% ~ 50% worse. In Lustre, file attributes are divided
into two parts, one part (including mode, owner, stripe information, ACL and
etc) is on MDS, the other part (including size, xtime and etc) is on OSS. Stata-
head just pre-fetches file attribute from MDS, the traversing thread fetches the
other file attribute from OSS by itself when needed. We assume that the RPC
time for “client<=>MDS” and “client<=>OSS” are the same, so fully parallel
statahead can save at most 50% of the whole traversing time (comparing with
non-statahead case).

More explanation about the fully parallel statahead: the statahead thread and
the traversing thread deal with their business in parallel, and can be described
as the model of producer and consumer. If the statahead thread (producer) can
not per-fetch file attribute from MDS quickly enough, then the traversing thread
(consumer) has to wait for the statahead thread. In Lustre, there are limitation
for in flight RPC count between client and MDS. If the statahead thread can
pre-fetch file attribute quickly enough, such limitation will not much affect in
flight statahead RPC, and the statahead thread can feed the traversing thread
quickly enough. But under high latency network environment, during one RPC
latency, the statahead thread maybe send out more statahead RPCs than such
limitation, then some statahead RPCs have to queue until former statahead RPCs
replied. That is not fully parallel. So under such case, we should increase such

1

0.2. REQUIREMENTS

in flight RPC count limitation, to allow more in flight (statahead) RPCs between
client and MDS. On the other hand, large count in flight RPC maybe cause MDS
overload, so there should be some balance for such tuning.

As you have seen above, for one stat operation from userspace, it triggers at least
two RPCs (ignore cached case), the first one is for file attribute from MDS (
including stripe information), the second one is for file size/xtime from OSS (ac-
cording to stripe information). Currently, the statahead thread only processes the
first RPC, if it can process the second one also, means pre-fetches file attribute
from OSS, then the performance of traversing large directory will be much im-
proved.

3. Size on MDS (SOM)

If allow MDS to cache file size/xtime attribute, then client only needs one RPC
to fetch all the file attribute from MDS. Consider the best cases, such cache is
valid for all files under a directory, then traversing such directory can save near
50% time. SOM is just for that, such feature is in processing for years by Oracle.
Unfortunately, it is some complex as to there is no stable version can be used yet.

4. Reduce RPC count

Currently, one lookup/getattr RPC is just for attribute of one file, if we can com-
bine several lookup/getattr RPCs into one, then client can fetch multiple files
attribute with single RPC. The similar situation for glimpse RPC between client
and OSS. Assume the average RPC aggregate degree is “N” (count of items/files
are processed in one RPC), then only need 1/N RPCs for traversing the same
directory. If high network latency is the unique main reason for bad performance
of traversing large directory, then it is significant improvement. That is the basic
idea for aggregate stat. It will run together with statahead.

0.2 Requirements

• The performance of traversing large directory (contains 100K single stripe files)
on high latency (> 1 ms) network should be improved at least 100%.

• The performance of traversing large directory (contains 100K single stripe files)
on local network should not be worse.

• The performance of traversing small directory (not more than 1K files) should
not be worse.

All the tests should be done on single client, and no other writers on other client(s)
under the same directory.

2

0.3. FUNCTIONAL SPECIFICATION

0.3 Functional specification

1. User control interface for enable/disable statahead

There is already such proc interface on client side, name “statahead_max”. “0”
means disable, “N” means the max statahead window size.

2. User control interface for enable/disable statahead from OSS

It is a new proc interface on client side, named “statahead_oss”. Because glimpse
RPC maybe not obtain related extent lock(s) from OST(s) if some other(s) is
(are) changing related OST object(s). Under such case, the size obtained by
statahead is transient one, the traversing thread has to re-fetch file size by itself
when really used, means the glimpse RPC triggered by the statahead thread is
redundant. Such interface allows the user to enable/disable statahead from OSS
according to the real cases. “0” means disable, others means enable, “stata-
head_oss” is by pass if “statahead_max” is “0”.

3. User control interface for enable/disable aggregate stat

It is a new proc interface on client side, named “statahead_aggregate”. “0” means
disable, “N” means the max value RPC aggregate degree, “statahead_aggregate”
is by pass if “statahead_max” is “0”. Will discuss this interface more detailed in
logic specification.

4. Other statistics interfaces for aggregate stat

Including how many aggregate stat RPCs triggered, average aggregate degree,
and so on.

0.4 Use cases

There are several facets should be considered for testing and comparing, those should
be combined.

• directory size

1K items, 10K items, 100K items

• stripe count

full stripe, single stripe, zero stripe (sub-dir, or file with “O_LOV_DELAY_CREATE”),
misc cases

• network latency

local network, 1 ms latency, 10ms latency

• enable/disable statahead/aggregate stat

disable statahead, enable statahead from MDS only without aggregate stat, en-
able statahead from OSS without aggregate stat, enable statahead from OSS and
aggregate stat

3

0.5. LOGIC SPECIFICATION

0.5 Logic specification

0.5.1 Aggregate degree

Means how many items can be processed within one aggregate stat RPC. It is not more
large value more good. There are five main facets about the degree of aggregate getattr
RPC between client and MDS:

• page size

We only want to aggregate the items within one readdir() page from MDS, be-
cause more items across multiple readdir() pages maybe cause readpage RPC(s),
such latency can not be ignored under high latency network environment. Con-
sider readdir() page from MDS, each page contains several entries:

struct ll_dir_entry {
/* number of inode, referenced by this entry */
__le32 lde_inode;
/* total record length, multiple of LL_DIR_PAD */
__le16 lde_rec_len;
/* length of name */
__u8 lde_name_len;
/* file type: regular, directory, device, etc. */
__u8 lde_file_type;
/* name. NOT NUL-terminated */
char lde_name[LL_DIR_NAME_LEN];

};

Assume the average item name length is “L”, then average entry size in readdir()
page is “L+8”, so the entry/item count in one readdir() page is “C”=“PAGESIZE/(L+8)”.
The max aggregate degree “N” must be less than “C”. And if “L” is 2 (the min
value), PAGESIZE is 4096 (normal case), then “N” is less than 410.

• RPC size and reply size

Currently, the max RPC size (limitation in LNET layer) is not more than 1M
bytes. For an item with full stripe and full ACL set, the reply size is about 4.5K
(ldlm_reply + mdt_body + EA + ACL), so under such case, “N” is not more than
230.

• MDS load and client impartial

Aggregate getattr is large RPC, one aggregate getattr RPC equals to “N” normal
lookup/getattr RPC. From the view of MDS, it causes related service thread to
hold CPU for longer time than other normal RPC, and then causes other RPC
to queue for more time. Even serving aggregate getattr with separated portal
on MDS, it also maybe cause other aggregate getattr RPCs (from the same or
different client(s)) starved.

4

0.5. LOGIC SPECIFICATION

• LRU size for cached ldlm lock on client side

For aggregate getattr RPC reply, MDS returns “N” IBITS locks if all of them are
available at once without waiting. And then, client must caches such locks on
client side. So more large “N”, means more IBITS locks cached on client side,
once reach the LRU size limit, then some of them will be dropped by client, even
though before they are used by the traversing thread. So the traversing thread has
to send lookup/getattr RPCs again by itself when really access these items.

• hit rate and statahead window size

Statahead is based on prediction. In fact, the statahead thread does not know
whether the caller want to traverse the whole directory or not. So it just pre-
fetches some items, but not all, and goes ahead step by step. That is the statahead
window. If the subsequent stat operations hit the items which are pre-fetched,
then can enlarge statahead window, otherwise maybe shrink statahead window
or stop statahead (depends on the miss rate). The aggregate getattr should be
controlled by such statahead window also, mean the degree of aggregate getattr
should not larger than statahead window size.

So we should set a max “N” by force (Currently, I prefer to “N<=48”), within such
limitation, users on client can adjust “N” by proc interface. To simplify the design and
implementation, aggregate glimpse share the same aggregate degree “N” with aggre-
gate getattr. But it is some different for aggregate glimpse RPC, a bit complex. Because
the OST count is more than MDT count (even if consider CMD case in future) for gen-
eral cases. If most items are single striped in the directory and OST count is some
large, then it is not easy to wait every OSC’s aggregate degree reach “N” and then trig-
ger the aggregate glimpse RPC, otherwise the glimpse requests which are added into
such aggregation early have to wait for some long time, even exceed RPC latency. So
we uses more flexible policies to trigger aggregate stat RPC, which will be discussed
in later section.

0.5.2 Aggregate policies

Aggregate RPC means some requests wait in the aggregation until it is full or some
other condition(s) is/are triggered. But it should not cause the early joined requests to
wait for so long time as to exceed RPC latency. So we should set some conditions to
trigger aggregate stat RPC.

• general policies

– Once sub-request count reaches the defined aggregate degree, then triggers
aggregate stat RPC.

– Before the statahead thread triggers any other RPC (except aggregate RPC),
if the aggregation is not empty, then triggers aggregate stat RPC.

5

0.5. LOGIC SPECIFICATION

– Before the statahead thread tries to obtain any local lock (like semaphore),
which will cause the statahead thread to wait without CPU held, if the
aggregation is not empty, then triggers aggregate stat RPC.

– When comes to the end of the directory, if the aggregation is not empty,
then triggers aggregate stat RPC.

– If the statahead thread exit abnormally (killed by others, or high miss rate,
or something wrong), then drops the aggregation.

• special policies for aggregate getattr

– Only the lookup/getattr request triggered by the same statahead thread can
be added into the same aggregation.
One reason is that these lookup/getattr requests can share the same parent
directory information, sponsor information, which need to be sent to MDS
for lookup/getattr related child items. So reduces RPC size. The other rea-
son is that the statahead thread should process the aggregate getattr RPC re-
ply, to build/update related dentry/inode in cache, to trigger related glimpse
request. Based on current statahead mechanism (one statahead thread only
serves one traversing thread), lookup/getattr request triggered by different
statahead threads should be processed separately. So for each MDC, there
maybe several aggregate getattr RPCs to be triggered at the same time.

• special policies for aggregate glimpse

– All the glimpse requests triggered by any statahead thread can be added
into the same aggregation.
Each glimpse request is different from others, there is no common infor-
mation can be shared among them, even though for these objects in the
same parent directory. On the other hand, the aggregate glimpse RPC reply
can be processed by the registered callback functions without any statahead
thread involved. Another advantage is that it can accelerate the gathering of
asynchronous glimpse requests, and reach to the defined aggregate degree
more quickly, and then to be triggered. So for each OSC, there is only one
aggregate glimpse RPC to be triggered at the same time.

– Any glimpse request triggered by other non-statahead thread can join the
aggregation under related OSC, and triggers the aggregate glimpse RPC at
once.
Make full use of any can be shared RPC to deliver the aggregation. There is
at most one sub-request in the aggregate GLIMPSE RPC which is triggered
by non-statahead thread.

0.5.3 Protocol changes

1. Introduce new RPC named “MDS_AGGREGATE_GETATTR” for aggregate
getattr between client and MDS

6

0.5. LOGIC SPECIFICATION

• RPC request format

header (lustre_msg_v2)|ptlrpc_body|mdt_body|sub_req_desc|sub_req(s)

– header: the same as other RPC, all the sub requests are counted as one
field

– ptlrpc_body: “pb_opc” is MDS_AGGREGATE_GETATTR
– mdt_body: “fid1” is parent fid, “fid2” is unused
– sub_req_desc: sub-request count, and array for each sub-request length

struct sub_req_desc {
__u32 srd_count;
__u32 srd_lens[0];

}

– sub_req: it is simplified ENQUEUE (LOOKUP/GETATTR) RPC re-
quest

sub_req_header|ldlm_request|child_fid (or filename)
struct sub_req_header {

__u32 srh_count;
__u32 srh_opc;
__u32 srh_valid;
__u32 srh_lens[0];

}

• RPC reply format

header (lustre_msg_v2)|ptlrpc_body|sub_rep_desc|sub_rep (s)

– header: the same as other RPC, all the sub replies are counted as one
field

– sub_rep_desc: sub-reply count, and array for each sub-reply length
struct sub_rep_desc {

__u32 srd_count;
__u32 srd_lens[0];

}

– sub_rep: it is simplified ENQUEUE (LOOKUP/GETATTR) RPC re-
ply

sub_rep_header|ldlm_reply|mdt_body[|EA|ACL]
struct sub_rep_header {

__u32 srh_count;
__u32 srh_valid;
__u32 srh_lens[0];

}

• RPC portal

7

0.5. LOGIC SPECIFICATION

– request portal: MDS_AGGREGATE_PORTAL
– reply portal: MDS_AGGREGATE_PORTAL

Do not share other service portals on MDS. Because “MDS_AGGREGATE_GETATTR”
is large RPC, which needs more large request/reply buffer than other RPC.
On the other hand, it maybe hold MDS CPU for more long time as to cause
other RPC starved under share portal mode.

2. Introduce new RPC named “OST_AGGREGATE_GLIMPSE” for aggregate glimpse
between client and OST

• RPC request format

header (lustre_msg_v2)|ptlrpc_body|sub_req_desc|sub_req(s)

– header: the same as other RPC, all the sub requests are counted as one
field

– ptlrpc_body: “pb_opc” is OST_AGGREGATE_GLIMPSE
– sub_req_desc: sub-request count, and array for each sub-request length

struct sub_req_desc {
__u32 srd_count;
__u32 srd_lens[0];

}

– sub_req: it is simplified glimpse RPC request
sub_req_header|ldlm_request
struct sub_req_header {

__u32 srh_count;
__u32 srh_opc;
__u32 srh_valid;
__u32 srh_lens[0];

}

• RPC reply format

header (lustre_msg_v2)|ptlrpc_body|sub_rep_desc|sub_rep(s)

– header: the same as other RPC, all the sub replies are counted as one
field

– sub_rep_desc: sub-reply count, and array for each sub-reply length
struct sub_rep_desc {

__u32 srd_count;
__u32 srd_lens[0];

}

– sub_rep: it is simplified glimpse RPC reply

8

0.5. LOGIC SPECIFICATION

sub_rep_header|ldlm_reply|ost_lvb
struct sub_rep_header {

__u32 srh_count;
__u32 srh_valid;
__u32 srh_lens[0];

}

• RPC portal

– request portal: OST_AGGREGATE_PORTAL
– reply portal: OST_AGGREGATE_PORTAL

3. Introduce new ldlm lock flags “LDLM_FL_STATAHEAD” to indicate whether
the lock request is triggered by statahead thread

0.5.4 MDS side logic

When MDS receives aggregate getattr RPC, it analyzes and processes every sub-request
in turn.

• For the first sub-request in the aggregation, MDS can process it as normal lookup/getattr
RPC (with intent lock) without reply at once. If someone has held related IBITS
lock for the first item, and caused the service thread blocked, then just wait until
obtained such lock.

• For other sub-requests, process them as normal lookup/getattr RPC (with in-
tent lock) without reply at once, but if someone has held related IBITS lock for
some item, and will cause the service thread blocked, then just stop processing
(LDLM_FL_BLOCK_NOWAIT), ignore all subsequent sub-requests in the ag-
gregate getattr RPC. Because we have held at least one IBITS lock already, if
blocked and wait for other IBITS locks, it maybe cause deadlock. Under such
case, just reply the client with the successful processed item(s). Client will send
new RPC(s) later for those unprocessed items yet.

0.5.5 OSS side logic

When OST receives aggregate glimpse RPC, it analyzes and processes every sub-
request in turn. There are two cases:

• For those sub-requests without conflict lock(s) held by other client(s), just pro-
cess them as normal glimpse RPC without reply at once.

• For those sub-requests with conflict lock(s) held by other client(s), if it is trig-
gered by non-statahead thread, then processes it as normal glimpse RPC (sending
glimpse callback to the highest lock holder to query file size if needed), other-
wise ignores such sub-requests (just uses the stale size on such OST, because

9

0.5. LOGIC SPECIFICATION

the traversing thread will fetch file size by itself later if without glimpse lock
granted here). Since there is at most one sub-request in the aggregate glimpse
RPC which is triggered by non-statahead thread, the whole processing of the
aggregate glimpse RPC will trigger glimpse callback at most once, other oper-
ations are all locally as normal glimpse RPC does. So it will not introduce any
additional latency by network.

After all the sub-requests have been processed, packs all the results and replies.

0.5.6 Client side logic

There are three main entities on client side for aggregate stat operation: the traversing
thread, the statahead thread and the glimpse callback.

• the traversing thread

When the traversing thread begins to traverse the directory, it triggers the stata-
head thread firstly. Then it stats every item in the directory in turn. During
those stat operations, it maybe wait because of related item(s) unready until the
statahead thread or glimpse callback wakes it up.

The traversing thread controls the statahead window. If the item it wants is ready
in cache without further lookup/getattr RPC to MDS, then it hits, and then the
statahead window maybe enlarged, otherwise for miss cases, it maybe shrink
the statahead window or just stops the statahead thread. Whether hit or miss,
after each stat operation, the traversing thread will move forward the statahead
window and try to wake up the statahead thread if it is waiting on the statahead
window boundary.

• the statahead thread

1. The statahead thread fetches directory page(s) from MDS and scans such
page(s). For each item, it make a lookup/getattr request down to the lower
layer MDC (dispatched through LMV for Lustre-2.x).

2. In MDC layer, checks whether held related IBITS lock already, if yes,
moves such item to glimpse process, otherwise adds such request into re-
lated aggregation (identified with statahead ID), if such aggregation is full,
triggers aggregate getattr RPC.

3. When reaches statahead window boundary, or end of the directory page
(need more page from MDS), the statahead thread will trigger aggregate
getattr RPC if related aggregation is not empty, and then process former
aggregate getattr RPC reply. For those items without related IBITS locks
obtained, re-adds them into related aggregation. For items gained related
IBITS locks from MDS, makes a glimpse request down to the lower layer
OSC (dispatched through LOV) for each.

10

0.5. LOGIC SPECIFICATION

4. In OSC layer, checks whether held related EXTEND lock already, if yes,
callback and wakes up the traversing thread (if all other related EXTEND
locks held), otherwise adds such request into the OSC aggregation, if the
aggregation is full, trigger aggregate glimpse RPC.

5. After processing all the aggregate getattr RPC replies and triggering all
related aggregate stat RPCs (whether reaches aggregate degree or not), the
statahead will trigger readpage RPC for end of directory page case, or fall
into waiting if reaches statahead window boundary until be waken up by
the traversing thread.

6. Repeat above process until the statahead thread is stopped. For normal
exit (means reaches the end of directory), all the items must be processed
(aggregate glimpse RPC triggered if needed). For other abnormal cases,
drops related aggregation.

• the glimpse callback

It processes aggregate glimpse RPC reply, updates inode size/xtime, and wakes
up the traversing thread. Because glimpse operation is non-blocked, it does not
guarantee to obtain related EXTENT lock together with object size/xtime infor-
mation. It is the traversing thread’s duty to check whether held related EXTENT
lock or not after waken up, if without, sends glimpse RPC again by itself.

0.5.7 Resend aggregate stat RPC

If something wrong caused the aggregate stat RPC reply lost, then related aggregate
stat RPC will be resent and reprocessed.

• client

Just resend related aggregate stat RPC, no special process.

• OSS

Because glimpse RPC is non-blocked operation, then OST maybe not grant lock
to the client if related lock is in using by others. When OST processes the resent
aggregate glimpse RPC, it needs to check compatible queue again to make sure
whether the conflict lock still is in using or not.

• MDS

Because MDS maybe only processed part of the sub-requests in the original
aggregate getattr RPC (for LDLM_FL_BLOCK_NOWAIT or others), then for
those have been processed, reprocesses them as normal resent lookup/getattr
RPC (with intent lock) without reply at once; and for others, processes them
as new lookup/getattr RPC (without reply at once).

11

0.5. LOGIC SPECIFICATION

0.5.8 Replay aggregate stat RPC

According to current Lustre recovery mechanism, LOOKUP/GETATTR/GLIMPSE
RPC are all idempotent operations, in this sense, no need to replay aggregate stat RPC.
On the other hand, client maybe hold some ldlm lock(s) through aggregate RPC, these
locks can be replayed as normal ldlm lock recovery process if needed, nothing special
related with aggregate stat RPC.

0.5.9 Scalability & performance

Aggregate stat is used for improving the performance of traversing large directory on
single client under high latency network environment. But from the view of server,
aggregate stat RPC is large one, it increases the server load. If many clients trigger
lots of aggregate stat RPCs at the same time, then maybe cause server overload. Under
such case, from the view of client, the performance of traversing large directory maybe
not as good as expected, even worse. So some new mechanism should be introduced
to allow server to tell client that the server is in high load mode, do not send large
aggregate stat RPC, means decreasing the aggregate degree. A simple way for that is
to return some flags in the aggregate stat RPC reply.

Further study the issues under large scaled Lustre system, it is about how to establish
the aggregate degree. It is not only the client decision, but also the negotiation result
with server, and can be adjusted dynamically according to the system load.

It is obvious that the statahead window size should not be smaller than the aggregate
degree. To make the statahead thread fully run with less waiting for server, the stata-
head window size is at least double the aggregate degree. Then when one aggregate
stat RPC is in processing by server, client can fill another aggregate stat RPC at the
same time.

12

