

 i

Design Document

For the
Imperative Recovery Project

On the
ORNL Scalable File System Development Contract

Revision History
Date Revision Author
03/22/2011 Original J. Xiong
03/28/2011 V0.99 J. Xiong
04/22/2011 V1.00 J. Xiong, eeb
06/27/2011 V1.01 J. Xiong
7/11/2011 V1.02 J. Xiong

Imperative Recovery Design Document

 i

I. Table	 of	 Contents	

I.	 Introduction	 ...	 1	
II.	 Definitions	 ...	 2	
Target	 ..	 2	
Target	 Index	 ..	 2	
Target	 Status	 Table	 ...	 2	
Recovlock	 ...	 2	
Recovery	 Window	 ...	 2	

III.	 Requirements	 ...	 2	
Imperative	 Recovery	 will	 shorten	 recovery	 time	 by	 notifying	 clients	 actively	 when	 a	 server	
restarts.	 ..	 2	
Imperative	 Recovery	 will	 support	 failover	 servers	 ..	 3	
Imperative	 Recovery	 will	 only	 execute	 when	 all	 clients	 support	 Imperative	 Recovery	 	 3	
Imperative	 Recovery	 will	 not	 impede	 the	 current	 recovery	 mode	 ..	 3	

IV.	 Changes	 from	 Solution	 Architecture	 ...	 3	
V.	 Functional	 specification	 ..	 3	
Target	 status	 table	 on	 the	 MGS	 ...	 3	
Target	 waiting	 policy	 ...	 4	
Concurrent	 operation	 of	 normal	 and	 imperative	 recovery	 ..	 5	

VI.	 Use	 Cases	 ..	 5	
Standard	 IR	 ..	 5	
IR	 with	 Failover	 ...	 5	
No	 IR	 –	 MGS	 Down	 ...	 5	
No	 IR	 -‐	 Not	 All	 Clients	 Support	 IR	 ...	 6	

VII.	 Logic	 specification	 ...	 6	
Flow	 chart	 ..	 7	
Target	 status	 table	 ..	 8	
A	 new	 config_llog_instance{}	 at	 client	 ..	 8	
Target	 restart	 ...	 9	
MGS	 status	 and	 target	 policy	 ..	 10	
Connection	 flag	 ...	 11	
Configurable	 parameters	 ..	 11	

VIII.	 Wire	 protocol	 changes	 ..	 12	
IX.	 Open	 issues	 and	 future	 work	 ...	 12	
Configuration	 ...	 12	
Scalability	 ...	 13	

Scope Statement

 ii

Usability	 ..	 13	

Imperative Recovery Design Document

 1

I. Introduction
The following solution architecture applies to the Imperative Recovery (IR) project
within the ORNL Scalable File System Development contract signed 11/23/2010
and modified on 03/18/2011. ORNL is experiencing exceedingly long service
outages during server failover and recovery. Currently this process takes
unacceptably long because it depends on timeouts scaled to accommodate
congested service latency.

Large-scale lustre have historically experienced problems recovering in a timely
manner after a server failure. This is due to the way that clients detect the server
failure and how the servers perform their recovery.

From the client side, the only way it can detect the failure of a server is by the
timeout of Remote Procedure Calls (RPCs). If a server has crashed, the RPCs to
the targets associated with that server will time out and the client will attempt to
reconnect to the failed server, or to a failover server if configured. After
reconnection, the client will participate in recovery and then continue in normal
service.

A restarting target will try to recover its state by replaying RPCs executed but not
committed by its previous incarnation. These RPCs must be executed in the
original order to ensure the target reconstructs its state consistently. The target
must therefore wait for all clients to reconnect before recovery completes and new
requests can be serviced because a missed replay transactions could result in
recovery failure and a late replay transaction could be invalidated by new
requests. This wait, called the “recovery window” is bounded to ensure a failing
client cannot delay resumption of service indefinitely.

The above processes are time consuming, as most are driven by the RPC timeout
which must be scaled with system size to prevent false diagnosis of server death.
This is especially difficult in an environment of ORNL’s scale.

The purpose of imperative recovery is to reduce the recovery window by actively
informing clients of server failure. The resulting reduction in the recovery window
will minimize target downtime and therefore increase overall system availability.

Imperative Recovery Design Document

 2

II. Definitions

Target
A Target is a Lustre Object Storage Target (OST) or Metadata Target (MDT).
A single server typically includes multiple targets.

Target Index
Target index is an integer to identify a target designated at formatting time
or assigned by the MGS. Target index is immutable. For a target with name
lustre-OSTXXXX, its index is XXXX.

 Target Instance Number
A Target instance number is a unique number to identify and differentiate
between each running instance of a target. The Target instance number is
generated by the target itself when it starts up.

Target Status Table
A Target Status Table is a table on the MGS where every target’s information
is stored. The information in the target status table includes target
identification information such as the file system name, target index and
target instance number. It also includes target location information, namely
the list of NIDs that can be used to reach this target.

Recovlock
The recovlock is a plain ldlm lock resident on the MGS, which is used by the
MGS to notify the clients when the target status table was changed.

Recovery Window
The recovery window refers to the time from when a target is restarted to
when it has completed recovery by reordering and replaying all uncommitted
RPCs and is ready to serve new requests.

III. Requirements

Imperative Recovery will shorten recovery time by notifying
clients actively when a server restarts.

 Active notification means that the latency from server restart to clients
starting to participate in recovery scales with message latency and not the
RPC timeout.

Imperative Recovery Design Document

 3

Imperative Recovery will support failover servers
 The notification delivered to clients on target restarts includes the NID of the

server exporting the target. This ensures that when notified, clients connect
immediately to the correct server both on server restart and on failover.

Imperative Recovery will only execute when all clients
support Imperative Recovery

 If the cluster consists of IR-supporting servers and non-IR clients, normal
recovery must be adopted, to ensure non-IR clients participate in recovery.

Imperative Recovery will not impede the current recovery
mode

 Imperative recovery relies on the Management Server (MGS) to function
properly. If the MGS is down, imperative recovery must not delay normal
timeout-based recovery.

IV. Changes from Solution Architecture
The IR Solution Architecture proposed using llog infrastructure to transfer the
target restarting information to the clients. Upon further analysis it was
determined it would be more efficient for the MGS to maintain a target status table
and use the GET_INFO RPC to transfer this information. This change does not
impact any functionality described in the Solution Architecture.

V. Functional specification
In order to satisfy the requirements above, IR will actively notify clients after a
target has restarted, allowing them to be reconnected promptly. The MGS was
selected to provide this service, as all targets register with it after starting.

Target status table on the MGS
The target status table is used by the MGS to retain the status of each target
in the cluster. Each target has a corresponding entry in the target status
table containing the following information:

• File system name of target
• Target name
• Server index of target (i.e. - ost index or mdt index)
• Target instance number
• NID list by which the target can be reached
• Table version number when this entry was last updated

Imperative Recovery Design Document

 4

When a target is registered to the MGS, the MGS updates the target status
table. If the target is a newly added one, the MGS composes a new table
entry and adds it into the table; otherwise, for an already existing target,
the table entry is updated, typically with the new NIDs and target instance
number.

The target status table version is used to track changes to the table.
Whenever the target status table is changed, this version number is
incremented and new and modified entries are stamped with it. This makes
it easy to find new or updated table entries since any previous version. The
up-to-date table version number must be written to persistent storage so
that it won’t confuse clients in case the MGS itself is restarted.

The MGS will update the target status table while receiving target register
RPC, and then notify a specified thread to enqueue an EXCL mode recover
lock. The MGS has to respond target register RPC as soon as possible to
avoid RPC timeout on the restarting target. If many targets register while
the MGS is enqueueing or holding the recovlock, all their target status table
entries can be changed in one go.

Clients use the recovlock to protect their cached copies of the target status
table. On startup clients enqueue a shared recovlock and synchronize its
version number with the MGS. When the MGS enqueues its EXCL lock,
clients receive notification and must cancel and then re-enqueue their
shared lock. On re-acquisition the target status table version number is
used to find new and modified entries. Clients may then reconnect to new
targets.

Note that clients may detect problems with a target, reconnect and recover
independently of the MGS. This race is resolved by checking the target
instance number when reading new target status table entries.

Target waiting policy
Unfortunately, it’s impossible for the MGS to know how many clients have
been successfully notified or whether a specific client has received the
restarting target information. The only thing the MGS can do is tell the
target that, for example, all clients are imperative recovery-capable, so it is
not necessary to wait as long for all clients to reconnect. For this reason, we
still require a timeout policy on the target side, but this timeout value can be
much shorter than normal recovery. The exact time the target should wait

Imperative Recovery Design Document

 5

relies on the status of network, workload of previous instance and the size of
cluster, therefore there will be a configurable entry under /proc to set this
value. Typically the recommended value will be less than 5 minutes.

Since successful notification depends on all clients being registered with the
MGS and clients cannot rely on notification to reconnect to the MGS after
MGS failure, the MGS keeps IR disabled for a period on restarting.

Concurrent operation of normal and imperative recovery
Imperative recovery is not available when the MGS is down or some clients
in the cluster do not support IR. IR therefore does not replace the
traditional, timeout-based recovery but provides an additional mechanism
that should accelerate recovery in most instances.

VI. Use Cases
Note: in the following use cases, when we refer to target shutdown, it means
stopping the target by any means including administrative control, crashing, power
loss or any other unspecified reasons.

Standard IR
Assumes an environment where the MGS has been running long enough for
all clients to connect and no failover server is configured for the target.
Shutdown a target, then restart it. Clients should be notified and then the
same target will be reconnected; user should experience a much shorter
interruption than during standard timeout-based recovery.

IR with Failover
Assumes an environment where the MGS has been running long enough for
all clients to connect and failover pairs are configured. Shutdown the master
server. Clients should be notified and then connect to the secondary server;
user should experience a much shorter interruption than during standard
timeout-based failover.

No IR – MGS Down
Assumes an environment where the MGS is down. Shutdown a target, then
restart it. After restarting, target should wait for the normal timeout-based
recovery window.

Imperative Recovery Design Document

 6

No IR - Not All Clients Support IR
Assumes an environment where the MGS has been running long enough that
all clients have connected and the cluster is composed of a combination of
IR-enabled clients and older clients that do not support IR. Shutdown a
target, then restart it. After restarting, target should wait for normal
timeout-based recovery window.

VII. Logic specification
This section describes how to use the target status table and recovlock to satsify
the IR requirements.

Imperative Recovery Design Document

 7

Flow chart

Imperative Recovery Design Document

 8

Target status table
The target status table is updated whenever the MGS receives a target
registration message. The MGS uses the target name and file system name
as the key word to search the table. If there is no such entry in the table, it
indicates that a new target has come online and a new entry will be
composed in the table; otherwise, IR will update the table entry of that
target (due to target instance number, it’s impossible for the entry to remain
unchaged after restarting), increase the table version number by 1, then
enqueue an EXCL recover lock to notify the clients that the table has been
changed.

The target status table entry for each target will include the following
information:

• File system name of target
• Target name
• Server index of target (i.e. - ost index or mdt index)
• Target instance number
• NIDs by which the target can be reached
• Table version number when this entry was last updated

When a client is notified, it will fetch newly changed entries using a
GET_INFO_RPC. It provides the MGS with the last table version number
know to this client so that all new table entries created or modified by all
restarting targets are retrieved.

After the clients receive the newly changed table entries, the target instance
number in the entry will be used to match the instance number in the
connection data. If they match, this indicates the client has already detected
the restarting of that target; otherwise, a new connecting RPC will be issued.

A new config_llog_instance{} at client
Similar to config llog instance, a recover llog instance will be added on the
client. The index of config_llog_instance is used to record the last-seen
version number of the target status table. Whenever the clients’ recovlock is
revoked, this version number will be provided so the MGS knows which
target’s entries should be returned.

Imperative Recovery Design Document

 9

After fetching target status table entries, the client will reform those entries
into lustre_cfg{} to facilitate code reuse. The lustre_cfg{} of target entry
will have configuration strings in the following format:

“osc.import = <NID>::<target instance number>”

For example:
“osc.import = 10.0.0.1@tcp::12345678” tells the client to connect to a new
target with NID 10.0.0.1@tcp and that the target instance number is
12345678.

Target restart
This section describes what happens to the MGS target status table and what
the clients will do after targets restart.

First of all, the target status table is managed as a linked list, sorted on
increasing table version number.
At initial status, the version # of the table is Cur_ver:

Then assuming TGT 0 was restarted, the entry of TGT 0 will be updated by
target register message, and then the entry will be moved into the tail of the
list, and table version is changed to Cur_ver + 1:

Imperative Recovery Design Document

 10

Then, the MGS enqueues an EXCL mode of recovlock so clients will be
notified. After re-acquiring the shared mode recovlock, clients will fetch
target entries with version numbers newer than their last-seen version
numbers. In this case, only TGT0’s entry will be returned.
The final status will be:

This architecture supports multiple targets restarting at the same time.

MGS status and target policy
There are 4 different imperative recovery states on the MGS: Partial,
Startup, Disabled and Full:
● Partial means not all clients support imperative recovery
● Startup means the MGS just started up but it’s in a quiescent period
when not all clients may be visible to the MGS
● Full means all clients are visible to the MGS, and all of them support
imperative recovery
● Disabled is for test purpose. Imperative recovery will be disabled.

When a target is restarted, it will still use normal recovery as if there was no
imperative recovery. Upon receiving the direction from the MGS in the

Imperative Recovery Design Document

 11

register reply RPC, targets will determine the appropriate time to close the
recovery window. If the MGS informs a target to use imperative recovery,
the time for the target to wait is a tunable parameter based upon specific
site experience. The administrator should configure it based upon the size of
cluster, delay on the network, workload, etc. For a medium size cluster, 5
minutes is typically long enough for all clients to reconnect to the restarted
target.

Unless it is in the Full state, the MGS will inform the target to still use the
standard recovery mode. Though the MGS may not be in the Full state,
eligible clients still will be informed so that at least some of them can
reconnect to the restarting target as soon as possible.

Connection flag
IR defines a new connection flag MSG_CONNECT_IMPERATIVE, which is used
by the clients to tell the MGS they support imperative recovery. If the MGS
supports imperative recovery (this is most cases as the MGS should be
upgraded first), the same flag will be returned to the clients.

The MGS will maintain the IR-capability status of each file system. The MGS
knows which file system the client belongs to when the client requests that
file system’s configuration.

On the MGS, whenever a new client connect or disconnect occurs, the MGS
has to reevaluate the clients list to check if all remaining ones are now IR-
capable. If the MGS is in Full/Reviving status, and a non-IR capable client is
connected, the MGS status will be changed from Full/Startup to Partial; if the
MGS is in Partial status, and if the last non-IR capable client is disconnected,
the MGS status will be changed to Full status.

Configurable parameters
IR employs the following configurable parameters:
● Recovery_time_factor: this is a parameter on the target side
representing the percentage of original target recovery timeout will be used.
This parameter must be in the range of [10, 100]. If a target is instructed by
the MGS that IR is usable, the recovery time is set to obd-
>obd_recovery_time * recovery_time_factor / 100. The default value of this
parameter is 50. This parameter can be written into configuration logs.
● Imperative_recovery_status: this is a parameter on the MGS. Users
may read IR status. The superuser may write the IR status for test
purposes.

Imperative Recovery Design Document

 12

VIII. Wire protocol changes
● Connection flag MSG_CONNECT_IMPERATIVE
● Target instance number in obd_connect_data {} and mgs_target_info {}
● MGS_GET_INFO

struct req_format RQF_MGS_GET_INFO =
 DEFINE_REQ_FMT0("MGS_GET_INFO", mgs_get_info_client,
 mgs_get_info_server);
struct req_msg_field *mgs_get_info_client[] = {
 &RMF_PTLRPC_BODY,
 &RMF_GETINFO_KEY, /* Key: GET_TARGET_NID */
 &RMF_NAME, /* File system name */
 &RMF_U64 /* Cached Table Version at the client */
};

struct req_msg_field *mgs_get_info_server[] = {
 &RMF_PTLRPC_BODY,
 &RMF_GETINFO_VAL, /* Table Entries */
 &RMF_U64, /* Client version of this RPC – CV;
 * Client will set its cached version number to CV
 * after processing this RPC
 */
 &RMF_U64, /* Latest Version at the MGS – LV;
 * LV must be equal or greater than CV, and if
 * LV > CV, client will read once again, until
 * LV == CV
 */
};

RMF_GETINFO_VAL contains an array of:

struct mgs_recover_info {
 char mri_tgtname[MTI_NAME_MAXLEN];
 __u32 mri_instance;
 __u32 mri_type; /* LDD_F_SV_TYPE_OST or
 * LDD_F_SV_TYPE_MDT */
 __u32 mri_index;
 __u32 mri_nid_count;
 __u64 mri_nids[];
};

IX. Open issues and future work

Configuration
It’s a strong recommendation to separate the MGS and MDS for a large
lustre deployment so that the MGS has enough bandwidth to handle IR
workload. Also for a serious deployment always having master-slave MDS
failover config, it will be interesting in running the MGS on the slave server.
This will change the master-slave configuration to active-active similar to
OSS failover nowadays.

Imperative Recovery Design Document

 13

Scalability
For simplicity, the MGS is used as a reflector to distribute events to clients.
This may have scalability problem in cases where there are a large number
of clients. This problem can be mitigated by separating the MDS and the
MGS so that the workload on the MGS becomes lighter. However true
scalability will only be achieved by distributing the task of client notification
over the whole server cluster.

Usability
The MGS is a single point of failure – if the MGS is down, there is no way to
know the failure of targets. The death of the MGS causes recovery to
continue in standard mode. It is assumed this is acceptable.

