whamcloud )

Scalability Test Plan on Hyperion

For the
Imperative Recovery Project
On the

ORNL Scalable File System Development Contract

Revision History

Date Revision Author
07/19/2011 Original J. Xiong
08/16/2011 Rev A J. Xiong
1. Colle (minor formatting edits)




whamcloud

Imperative Recovery Scalability Test

Table of Contents

I. Introduction 1
II. Test cases 1
Procfs entries to be used 2
Test cases 2
ir.scalability.ost.1 2
ir.scalability.ost.2 Error! Bookmark not defined.
ir.scalability.mdt.1 3
ir.scalability.mdt.2 Error! Bookmark not defined.
ir.scalability.multiple_targets 4

ir.scalability.scalability 5




whamcloud

Imperative Recovery Scalability Test

l. Introduction

The following test plan applies to the Imperative Recovery (IR) project within the ORNL Scalable File
System Development contract signed 11/23/2010 and modified on 03/18/2011. ORNL is experiencing
exceedingly long service outages during server failover and recovery. Currently this process takes
unacceptably long because it depends on timeouts scaled to accommodate congested service latency.

Large-scale lustre implementations have historically experienced problems recovering in a timely
manner after a server failure. This is due to the way that clients detect the server failure and how the
servers perform their recovery.

From the client side, the only way it can detect the failure of a server is by the timeout of Remote
Procedure Calls (RPCs). If a server has crashed, the RPCs to the targets associated with that server will
time out and the client will attempt to reconnect to the failed server, or to a failover server if
configured. After reconnection, the client will participate in recovery and then continue in normal
service.

A restarting target will try to recover its state by replaying RPCs executed but not committed by its
previous incarnation. These RPCs must be executed in the original order to ensure the target
reconstructs its state consistently. The target must therefore wait for all clients to reconnect before
recovery completes and new requests can be serviced because a missed replay transactions could
result in recovery failure and a late replay transaction could be invalidated by new requests. This wait,
called the “recovery window” is bounded to ensure a failing client cannot delay resumption of service
indefinitely.

The above processes are time consuming, as most are driven by the RPC timeout which must be scaled
with system size to prevent false diagnosis of server death. This is especially difficult in an
environment of ORNL’s scale.

The purpose of imperative recovery is to reduce the recovery window by actively informing clients of
server failure. The resulting reduction in the recovery window will minimize target downtime and
therefore increase overall system availability.

. Test cases

Right now there are two recovery types in the system: standard recovery and imperative recovery.
We’re going to compare the performance between them under different situations.

There are several control entities under procfs about imperative recovery. This is a list of proc entries
we will use during the test.



Imperative Recovery Scalability Test WhamCIOUd

Procfs entries to be used

NODE

PATH

SETTINGS

MGS

mgs.MGS.live.lustre

Read: print out stats and state of IR
[root@wolf6 tests]# Ictl get_param mgs.MGS.live.lustre,

Imperative Recovery Status:
state: Full, nonir clients: 0
nidtbl version: 5
notify total/max/count: 0/0/3

Write: 0
Clear stats;

Write: “status=Disabled”
Disable IR;

Write: “status=Full”
Set IR to full state.

CLIENT

Osc.lustre-OST0000-
osc-ffff*.pinger_recov

This can control if standard recovery will be
used. If this is disabled, the corresponding
OST can be recovered by only imperative
recovery.

Read:
Write: 0 - disable pinger recover;
1 - enable pinger recover.

CLIENT

Osc.lustre-OST0000-
osc-ffff*.import

Read:

target: lustre-OST0000_UUID

state: FULL

instance: 1859057999
Check state: FULL to make sure the osc has
been reconnected to the ost successfully.

Test cases

Test Case Name

Purpose

Actors
Description

ir.scalability.ost
To measure and compare how quick the IR can recover a

failing OST

OST, MGS and client

Shutdown and restart an OST in a running cluster,
investigate the time for the OST to get recovered.
This test case will run with the cases of IR and SR

specifically

jay 8/22/11 5:52 PM
Deleted: cat Ictl Ictl Ictl

I® Sarp Oral 8/22/11 7:26 PM

Comment [1]: 1.For this and the
other cases: Does make any sense
to test all with and without failover
pairs declared?

Replied by Jinshan: No, we don'’t
have such test env. But we have
done this test as unit test. The test
cases here are focusing on scalability

test.




Imperative Recovery Scalability Test

whamcloud )

Environment Settings

1. Must have workload on the failing OST. I recommend
running IOR on each client node to write objects on
this OST;

2. When the system is up, make sure the MGS is on Full
state by checking:
at the MGS grep state: /proc/fs/lustre/mgs/MGS/live/{fsname}

Trigger

OST shutdown and restarted

Preconditions

1. MGS is running;
2. all clients have connected,;
3. IOR are running on clients

Postconditions

Special Requirements

Disable SR by:
On all clients: et set_param osc.{ost import name}.pinger_recov=0
Disable IR by:

On the MGS: | set_param mgs.MGS.live.{fsname}="status=Disabled”

Assumptions

Expected Results

Clients should be able to reconnect to the failing target;
Investigate the time for all clients to get reconnected to the
failing target. We shall calculate the maximum and average
recovery time from each client,

Notes and Issues

Compare maximum and average recovery time under SR
and IR case

Test Case Name

ir.scalability.mdt
Purpose To measure how quickly the IR can recover a failing MDT
Actors MDT, MGS and client
Description Shutdown and restart an MDT in a running cluster,

investigate the time for the MDT to get recovered.
This test case will run with the cases of IR and SR
specifically

Environment Settings

1. Configure the MGS and MDT separately;

2. There must be workload on the failing MDT. I
recommend running mdsrate on each client node to
create objects on this MDT;

3. When the system is up, make sure the MGS is on Full
state by checking:
at the MGS: grep state: /proc/fs/lustre/mgs/MGS/live/{fsname}

Trigger

MDT shutdown and restarted

jay 8/22/11 5:53 PM
Deleted: and

jay 8/22/11 5:55 PM
Deleted: .




Imperative Recovery Scalability Test

Preconditions

Postconditions
Special Requirements

Assumptions
Expected Results

Notes and Issues

Test Case Name

Purpose

Actors
Description

Environment Settings
Trigger

Preconditions
Postconditions
Special Requirements

Assumptions
Expected Results

Notes and Issues

whamcloud )

1. MGS is running;

2. all clients have connected;

3. mdsrate is running for a while to make sure there is
enough dirty data unflushed on the MDT

Disable SR by:
On all clients: et set_param osc.{ost import name}.pinger_recov=0
Disable IR by:

On the MGS: it set_param mgs.MGS.live.{fsname}="status=Disabled”

Clients should be able to reconnect to the failing target;
Investigate the time for all clients to get reconnected to the
failing target. We shall calculate the maximum and average
recovery time from each client.

Compare maximum and average recovery time under SR
and IR case

ir.scalability.multiple_targets

To make sure imperative recovery works well if multiple
targets fail meanwhile

OST, MGS and client

Suppose there are tens of OSTs on each OSS, and restart
as many OSSes as possible on the same time, to
investigate if IR can handle this case smoothly.

This test case will run with the cases of IR and SR
specifically

N/A

OSSes shutdown and restarted

MGS is running and all clients have connected

Disable SR by:
On all clients: et set_param osc.{ost import name}.pinger_recov=0
Disable IR by:

On the MGS: it set_param mgs.MGS.live.{fsname}="status=Disabled”

Clients should be able to reconnect to all restarting OSTs in
a short time
Compare maximum and average recovery time under SR



whamcloud

Imperative Recovery Scalability Test

Test Case Name
Purpose

Actors
Description

Environment Settings
Trigger
Preconditions

Postconditions
Special Requirements

Assumptions
Expected Results

Notes and Issues

and IR case

ir.scalability.scalability

To verify that imperative recovery can notify many clients
in a reasonable time
OST, MGS and client
Mount thousands of mount points on each client node, and
then restart an OST;
This test case will run with the cases of IR and SR
specifically
N/A
0OSSes shutdown and restarted
1. MGS is running and all clients have connected
2. Make sure you have this line in your modprobe.conf
file: options obdclass lu_cache_percent=1, otherwise,
you can’t mount over 200 mountpoints on one node
3. Clear the IR stats by: at the MGS node: Ictl
set_param mgs.MGS.live.{fsname}=0

Disable SR by:
On all clients: et set_param osc.{ost import name}.pinger_recov=0
Disable IR by:

On the MGS: it set_param mgs.MGS.live.{fsname}="status=Disabled”

Clients should be able to reconnect to the restarting OST in
a short time.

Collect the Output Of et get_param mgs.MGS.live.{fsname}

One of the IR’s problems is that the MGS has to notify each
clients for the update of target register, so it may have the
scalability problem if there are two many clients in the
cluster. This test is to verify IR works well with at least
100K clients.

Compare maximum and average recovery time under SR
and IR case

Sarp Oral 8/22/11 7:29 PM

Comment [2]: A version of this test
case with ongoing I/O to other OSTs
while the tested OST is
restarted/tested, would be nice to
have.

Replied by Jinshan: Since we don't
have so many nodes, so we have
simulate 75K clients by mounting
600 mountpoints on each client node.
In this case, I don't think it will make
much sense to add workload.
Actually serious scalability test has

| still to be done at ORNL.

Sarp Oral 8/22/11 7:33 PM

Comment [3]: Is the CPU load on the
MGS measured during this test?

Replied by Jinshan: in our test, the
MGS can notify 75K clients in a really
short time, 8 seconds on average(no
workload in cluster), so we didn't
catch CPU load on the MGS. What I
can verify is that the CPU load on the
. MGS is high by a glimpse.

J




