

© 2012 Whamcloud, Inc.

Quota Enforcement for Orion

• Johann Lombardi

© 2012 Whamcloud, Inc.

• Not portable to other backend filesystems

• Quota on/off is on a per-target basis

• Changing a quota limit requires all slaves to
be up and running

• Qunit broadcast isn’t optimal

• Can’t deal with OST addition

• No proper way to decommission a dead OST

• Master recovery requires all targets to be up
and running

• Full quotacheck required after e2fsck

Today’s Quota

© 2012 Whamcloud, Inc.

• ZFS permanently tracks per-uid/gid disk
usage
– Even when there is no quota limit enforced

– Only #blocks and not #inodes

• Same scheme adopted with ldiskfs
– Quota as a new core ext4 feature

– mkfs.lustre/mke2fs creates empty quota files

– e2fsck can now fix quota files

• End of quotacheck

• Quota on/off only enables/disables
enforcement

• Let’s talk about enforcement in details now …

A few words on space accounting …

© 2012 Whamcloud, Inc.

• New Slave->Master connection

• Leverage the proven scalability of the LDLM
for quota communications

• Master tracks on-disk quota space distribution

• Setquota can be issued with missing slaves

• Efficient handling of OST addition

• Huge fraction of the quota space granted to
slaves initially

• Quota enforcement on/off managed globally

• DNE support

• Allow per-pool quota in the future

Architecture Primer

© 2012 Whamcloud, Inc.

Slave - Master connection

• Tracking reverse MDT import on OST is a pain

• Cannot enqueue locks on reverse import

• Orion’s OSP hides the connection

• FIDonOST needs a connection to MDT0 too

• New connection set up from slave to master

• Master still has to run on MDT0 for now

• Slaves can now enqueue locks …

© 2012 Whamcloud, Inc.

Quota Locks

• New class of locks to manage resources
allocated to clients
– Quota, grant, locks, permission to send RPCs, …

– New DLM namespace and lock type

– Each component (i.e. quota, grant …) is assigned a range
of LDLM resource IDs

– One step towards unification of grant and quota

• One global quota lock, namely quota index
lock
– Used to distribute the list of IDs having a quota limit

• Plus per-ID quota locks
– Must be acquired by slave in order to hold unused quota

space for that ID

© 2012 Whamcloud, Inc.

Quota Index Lock

• Slaves enqueue one quota index lock per
quota type

• Guarantee that the list of IDs with quota
enforced is in sync between master & slave

• List of IDs is fetched via a bulk transfer

• Master sends glimpse callbacks to notify
slaves of a new limit enforcement

© 2012 Whamcloud, Inc.

Per-ID Quota Lock

• Slaves must hold the per-ID quota lock when
caching unused quota space for a given ID

• Used to query/grant/cancel quota on that ID

• Master issues glimpse/blocking callbacks to
claim quota space back for that ID

• Lock request packed in QUOTA_DQACQ/REL
– If the slave does not own the quota lock for that ID, it

packs the lock enqueue request in the DQACQ/REL RPC

– If the slave already owns a lock for that ID, DQACQ/REL
RPC just packs the lock handle

– One exception is DQACQ requests issued after setquota to
report initial usage

© 2012 Whamcloud, Inc.

• Usually a 32-bit group or user ID

• Extended to support a FID

• Can be used to implement per-directory quota
– As done by Fujitsu

• New quota_id union introduced:

 union quota_id {

 struct lu_fid qid_fid;

 obd_uid qid_uid;

 obd_gid qid_gid;

 };

Quota Identifier

© 2012 Whamcloud, Inc.

• Master now aware of the quota space distribution

• One index per slave in addition to the global index

• Global index records for each ID:
– global soft/hard limits

– how much space is granted in total

– grace time

• Per-slave index tracks how much quota space is
owned by the slave for each ID

• Slaves fetch their dedicated index from the master
just after enqueueing the quota index lock

• Master’s indexes are the reference
– Slaves’ on-disk copy of the index is just a cache, crushed

each time the quota index lock is re-acquired

Quota Space Allocation Tracking

© 2012 Whamcloud, Inc.

• Replace existing quota recovery

• #1 slave enqueues the quota index lock
– After this point, the slave will be notified of IDs added/removed

to/from the enforced list via glimpse callbacks

• #2 slave fetches their private index via a bulk
transfer
– That’s the current list of IDs subject to a quota limit

– This index also includes how much space is granted to this slave
for each ID

• #3 slave re-acquires quota space
– If current usage == granted, no need to send any acquire RPC

– If current usage != granted, send a QUOTA_DQACQ RPC with lock
enqueue packed (the master might grant us back more than
usage)

– This way, only locks for “active” IDs are replayed

Slave (re)Integration Procedure

© 2012 Whamcloud, Inc.

Slave (re)Integration
Master Slave

LDLM_ENQUEUE

QUOTA INDEX LOCK

OBD_FETCH_IDX

 SLAVE INDEX

- walk slave index

- transfer slave index

 over the network
BULK TRANSFER

- compare current usage with

 space owned by this slave

- issue acquire RPC when

 usage != granted along with lock

 enqueue

- slave reintegration completed

- slave ready to process new req

[granted, qunit, lock]

- process acquire RPC

- process per-ID quota

 lock enqueue

- grant quota space

QUOTA_DQACQ

[usage, lock request]

- store a copy of the index on disk

© 2012 Whamcloud, Inc.

• Generic mechanism for reading index files
over the network
– Serialize the index into a byte stream on the “server ”

– Deserialize it on the “client”

• Only used to transfer the per-slave index from
master to slave for the time being

• Probably many other use cases in the future
– Quota master migration

– Repquota

– Directory split

• Credits to Andreas

Index Network Transfer

© 2012 Whamcloud, Inc.

• Compact record format: 24-byte

– Union between 16-byte FID and 8-byte [UG]ID

– 8-byte space representing the amount of quota space
allocated to the slave for this ID

• Records are grouped in a container
– Independent of page size, always 4KB

– Header with magic, flags, format
version, #entries and padding, resp.
=> 4+4+1+1+6 = 16 bytes

– 170 IDs per 4K container

– 43,520 IDs in a 1MB bulk transfer

Index Transfer Format

unused Space allocated

Sequence

[UG]ID

4KB container
Header Entry 1 Entry 2

…

…

objid ver

Entry 3 Entry 4

Entry 150

© 2012 Whamcloud, Inc.

Setquota with slaves connected

Client Master Slave 1 Slave 2

SETQUOTA
[ID,limit]

Insert GLB Index
limit, granted=0

Insert SLV1 Index
granted=0

Insert SLV2 Index
granted=0

GLIMPSE AST
[ID]

Insert ID in slave

index copy

SETQUOTA REPLY

Insert ID in slave

index copy

Usage(ID) == 0

 no need to

 issue acquire RPC

Usage(ID) != 0

 report usage

 no lock enqueue
QUOTA_DQACQ

[ID,usage]

Glimpse quota index

locks to notify slaves

Update SLV Index
granted=usage

Update GLB Index
granted+=usage [usage]

© 2012 Whamcloud, Inc.

Setquota with disconnected slaves

Client Master Slave
SETQUOTA

[ID,limit] Insert GLB Index
limit, granted=0

Insert SLV1 Index
granted=0

LDLM_ENQUEUE

QUOTA_DQACQ
[ID,usage,lock_request]

OBD_FETCH_IDX

BULK TRANSFER

- walk slave index

- transfer index
- slave realizes that it does

 not own space for the ID

 subject to the setquota

- issues DQACQ for the

 current usage, with lock

 enqueue

- slave enqueues

 quota index lock

Update SLV Index
granted=usage+bonus

Update GLB Index
granted+=usage+bonus [granted,qunit, lock]

Process lock enqueue

© 2012 Whamcloud, Inc.

Online OST/MDT Addition
Master

LDLM_ENQUEUE

QUOTA INDEX LOCK

OBD_FETCH_IDX

 SLAVE INDEX

BULK TRANSFER

- usage equals to 0 for all IDs

- No need to acquire any space

- Slave integration completed

- no slave index for this

 target

- generate one on the fly

 from the GLB index

- granted space set to 0

 for all IDs

Slave

© 2012 Whamcloud, Inc.

• Quota space allocated to slave on first write/create

• Huge fraction of the quota space is granted
– Less DQACQ RPCs

– More autonomy to slaves

– Mitigate space overestimation issue with ZFS

• Possible thanks to a reliable quota space
revocation mechanism based on the LDLM

• Connected slaves that potentially owned unused
quota space for a given ID must have a per-ID
quota lock

• Master issues glimpse or blocking callbacks on the
per-ID quota locks

• The master can now be more selective since it is
aware of the quota space distribution

Granting more to Slaves

© 2012 Whamcloud, Inc.

• Glimpse callbacks sent on the per-ID locks
to ask slaves to release a fraction of the
unused quota space, if any
– Replace the blind qunit broadcast

– OST_QUOTA_ADJUST_QUNIT RPC not used any more

• Slaves release space in glimpse reply
– Information packed in a new quota LVB

• Blocking callbacks sent as a last resort to
claim all unused quota space back

Quota Space Rebalancing

© 2012 Whamcloud, Inc.

• MDD/obdfilter don’t deal with quota any more

• Space estimated in OSD layer

• Routines handling enforcement called directly
from OSD layer

• Quota space acquired in ->declare
– DQACQ sent while transaction isn’t started

• Released at transaction stop time

New layering

© 2012 Whamcloud, Inc.

• Client’s RPC processing might be stuck waiting
for DQACQ RPC to master to complete

• Waiting for too long might cause the initial
RPC to time out
– client has to reconnect and resend all RPCs in flight, painful

• Client nodes can get evicted if lock
cancellation underway

• Current quota code drops the reply
– Quota not the only one to do that, check ost_brw_read/write()

• -EINPROGRESS now returned to clients
– Client should retry indefinitely

– Lock timeout will be extended thanks to HP request handling

– New connect flag to detect clients that support EINPROGRESS

Cascading timeouts

© 2012 Whamcloud, Inc.

• Can happen when glimpse callback on quota
locks not acknowledged in a timely manner
– Might impact other services using this connection

• From the master perspective, the slave has
gone “disconnected ”
– new ID can be added/removed to/from the slave index w/o

issuing glimpses

– space reserved by this slave cannot be claimed back

• From the slave point of view
– Quota locks must be re-enqueued ASAP

– Meanwhile, continue to operate with the on-disk copy

– If one ID runs out of local quota space, requests are failed with
-EINPROGRESS

– Once the lock is requeued, all in-memory structures & on-disk
index are cleaned up and recreated

Slave Eviction

© 2012 Whamcloud, Inc.

• Inode quota managed in the same way as
block quota

• All MDTs are slaves

• EINPROGRESS support to be extended to
metadata

• Metadata targets no longer acquire block
quota space and only deal with inode limit

• No inode quota with ZFS OSD

DNE support

