

© 2012 Whamcloud, Inc. 2

Inode Iteration and OI Scrub

Internal technical seminar
May 29th 2012

•  Fan Yong
 Whamcloud, Inc.
 yong.fan@whamcloud.com

Inode Iteration and OI Scrub

© 2012 Whamcloud, Inc.

•  Background
•  Requirements
•  OI scrub

–  Basic mechanism
–  Checkpoint support
–  Trigger strategy
–  RPC service during OI scrub

•  Inode iteration
–  Otable-based DT iteration APIs for up layer LFSCK
–  Rate control

•  Userspace tools
•  Tests

Agenda

3 Inode Iteration and OI Scrub

© 2012 Whamcloud, Inc.

•  In Lustre-2.x, FID is the global unique identifier
for the file/object
–  Independent from backend filesystem

•  For osd-ldiskfs, Object Index (OI) files are used
for FID  ino#/gen mapping
1.  The ino#/gen will be reallocated after restored from file-level backup
2.  Some OI file(s) may be corrupt/lost because of system crash
3.  Split/merge OI files for scalability
4.  OI files consistency routine check

•  Only osd-ldiskfs for the contract
–  The first phase and the basic elements for the whole LFSCK

Background

4 Inode Iteration and OI Scrub

© 2012 Whamcloud, Inc.

•  Online LFSCK
–  System is available during OI scrub

•  RPC w/o FID, or with new FID exported (by low layer) after the
latest MDT mount up can be processed as normal, no need to wait.

•  RPC with old FID exported before the latest MDT mount up, e.g.
replay or re-export through NFS, may fail directly or be blocked
until related mapping is updated or OI scrub completed.

•  Performance may be affected, but correctness will not.

•  Rate control
–  OI files consistency routine check (background OI scrub) should not

impact other operations performance too much.
–  Speed limit can be adjusted during LFSCK running.

Requirements

5 Inode Iteration and OI Scrub

© 2012 Whamcloud, Inc.

•  Controlled from userspace
–  LFSCK (OI scrub is contained) can be launched periodically or manually

by user command.
–  LFSCK can be stopped by user command.
–  LFSCK real-time information, like status, progress (current position),

speed, and so on, can be queried from userspace.

•  Checkpoint support
–  Resumed LFSCK from the latest checkpoint

•  General framework for LFSCK
–  Multiple components for the new LFSCK:

 OI scrub, MDT-OST consistency (layout, owner), DNE consistency
–  Shared inode iteration, rate control, userspace tools

Requirements (cont’d)

6 Inode Iteration and OI Scrub

© 2012 Whamcloud, Inc.

•  FID in LMA
–  The FID is stored as part of the inode extended attributes, called as

LMA (Lustre Metadata Attribute)
–  The FID in the inode LMA is always trusted
–  LMA will be preserved after restored from file-level backup

•  Rebuild OI files with LMA
–  Locate OI mapping entry with the FID in LMA
–  Update OI mapping if unmatched
–  Insert new OI mapping if no-entry

How to rebuild OI files?

7 Inode Iteration and OI Scrub

© 2012 Whamcloud, Inc.

•  Checkpoint file on the device
–  New local file “OI_scrub” to trace OI scrub
–  “OI_scrub” is only visible inside osd-ldiskfs

•  “OI_scrub” file structure
–  status: init, scanning, completed, failed, paused, crashed
–  flags: recreated, inconsistent, auto
–  latest checkpoint: for resuming from crash
–  statistics: file count (scanned/updated/failed), time

•  Resume from latest checkpoint
–  Next start position will be the latest checkpoint position
–  “OI_scrub” is updated periodically (60 seconds)
–  If crash, at most one update cycle work may be lost

Checkpoint support

8 Inode Iteration and OI Scrub

© 2012 Whamcloud, Inc.

•  Auto detect file-level backup/restore when mount
–  Old device UUID has been saved in “OI_scrub” before backup
–  New device UUID will be regenerated after restored

•  Auto detect new created OI file(s) when mount
–  OI files count has been saved in “OI_scrub” when the first mount

•  Auto check crashed OI scrub when mount
–  Status is “scanning” before OI scrub start

•  Auto verify OI consistency during RPC process
–  Before exporting FID out of OSD
–  When lookup by FID

•  Start/stop from userspace by force

Trigger strategy

9 Inode Iteration and OI Scrub

© 2012 Whamcloud, Inc.

•  Per-thread based single-entry cache
–  For current FID  ino#/gen mapping, whether related mapping in the

OI file is correct or not, exist or not.
–  Filled by RPC service thread before exporting FID out of OSD:

	
 osd_ea_lookup_rec(),	
 osd_it_ea_rec()	

–  Accelerate OI lookup for subsequent FID-based operations.

•  OI scrub high-priority inconsistent mappings list
–  For the right FID  ino#/gen mappings, if related mapping in the OI

files are invalid.
–  Filled by RPC service thread when finds inconsistent OI entry:

	
 osd_ea_lookup_rec(),	
 osd_it_ea_rec()	

–  To guarantee subsequent FID-based operations (whether from the

same thread or not) can find the right inode.
–  OI scrub will fix related entries in such list with high-priority.

Infrastructure for OI mapping

10 Inode Iteration and OI Scrub

© 2012 Whamcloud, Inc.

•  Search the FID  ino#/gen mapping with the
following order (to next step if formers failed):
1.  Current service thread OI mapping cache
2.  OI scrub high-priority inconsistent mappings list
3.  OI files

•  Verify related mapping in the OI file with the FID
in the inode LMA if comes to the 3rd step.
–  If inconsistent (for replay, re-export Lustre through NFS)

•  Trigger OI scrub if it has not run yet
•  Return “–EINPROGRESS” to client to notify the event

•  How to process the “-EINPROGRESS” on client?
–  Retry as quota case does
–  Fail out directly (current behavior, may be adjusted in future)

lookup_by_FID with OI scrub

11 Inode Iteration and OI Scrub

© 2012 Whamcloud, Inc.

•  Rebuilding OI files involves most of the objects on
the device
–  osd-ldiskfs view: inode table based iteration is the most efficient way

1.  Scanning the inode table sequentially
2.  For the valid bit, get inode and the FID in LMA

 osd_scrub_next()	

3.  Feed OI scrub with the right “FID  ino#/gen” mapping

 osd_scrub_check_update()	

4.  Repeat above steps until the device is fully scanned

–  Inode read-ahead for more efficient disk I/O
•  Now, it is controlled by ldiskfs
	
 __ldiskfs_get_inode_loc()	

•  Will consider to implement our own in LFSCK phase IV if needed

Inode iteration

12 Inode Iteration and OI Scrub

© 2012 Whamcloud, Inc.

•  LFSCK components also fully scan the system
–  MDD view: namespace based scanning (traverse directory) is intuitive,

but cannot guarantee full scanning because of rename.
–  Inode iteration is used to implement otable-based (object table based)

DT iteration APIs which are exported by OSD to up layer LFSCK.
const	
 struct	
 dt_index_opera9ons	
 osd_otable_ops	
 =	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 .dio_it	
 =	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .init 	
 	
 =	
 osd_otable_it_init,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .fini 	
 	
 =	
 osd_otable_it_fini,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .get	
 	
 	
 =	
 osd_otable_it_get,	
 /*	
 specify	
 itera9on	
 posi9on	
 */	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .next 	
 	
 =	
 osd_otable_it_next,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .key 	
 	
 =	
 osd_otable_it_key,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .key_size 	
 =	
 osd_otable_it_key_size,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .rec	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 =	
 osd_otable_it_rec,	
 /*	
 return	
 FID	
 */	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .load	
 	
 	
 	
 	
 	
 	
 	
 	
 =	
 osd_otable_it_load,	

	
 	
 	
 	
 	
 	
 	
 	
 }	

};

Inode iteration (cont’d)

13 Inode Iteration and OI Scrub

© 2012 Whamcloud, Inc.

OI scrub modes

14

•  Urgent OI scrub
–  Recreated: OI files are removed/recreated
–  Inconsistent: restored from file-level backup
–  Auto: inconsistency detected during RPC process

•  Non-urgent (background) OI scrub
–  OI consistency routine check
–  Run background automatically when other LFSCK

Inode Iteration and OI Scrub

© 2012 Whamcloud, Inc.

Rate control

15

•  Under urgent mode, OI files should be rebuilt/
updated as soon as possible, no speed limit
–  Try the best to guarantee system fully available

•  For background OI scrub, to reduce
performance impact on others, need rate control
–  Controlled by otable-based DT iteration rate
–  Main LFSCK engine invokes otable-based DT iteration
–  Prefetch window between OI scrub and up layer LFSCK otable-based

DT iterator (1024 inodes)
–  Specified when start LFSCK from userspace
–  Adjustable during LFSCK running

Inode Iteration and OI Scrub

© 2012 Whamcloud, Inc.

Userspace tools

16

•  Start LFSCK by command
lctl	
 lfsck_start	
 <-­‐M	
 |	
 -­‐-­‐device	
 MDT_device>	

	
 	
 	
 	
 	
 	
 [-­‐e	
 |	
 -­‐-­‐error	
 error_handle]	
 [-­‐h	
 |	
 -­‐-­‐help]	

	
 	
 	
 	
 	
 	
 [-­‐m	
 |	
 -­‐-­‐method	
 iteration_method]	

	
 	
 	
 	
 	
 	
 [-­‐n	
 |	
 -­‐-­‐dryrun	
 switch]	
 [-­‐r	
 |	
 -­‐-­‐reset]	

	
 	
 	
 	
 	
 	
 [-­‐s	
 |	
 -­‐-­‐speed	
 speed_limit]	

	
 	
 	
 	
 	
 	
 [-­‐t	
 |	
 -­‐-­‐type	
 lfsck_type[,lfsck_type...]]	

OPTIONS:	

-­‐M:	
 The	
 MDT	
 device	
 to	
 start	
 LFSCK	
 on.	

-­‐e:	
 Error	
 handle,	
 'continue'(default)	
 or	
 'abort'.	

-­‐h:	
 Help	
 information.	

-­‐m:	
 Method	
 for	
 scanning	
 the	
 MDT	
 device.	
 'otable'	
 (otable-­‐based	
 iteration,	
 default),	

'namespace'	
 (not	
 support	
 yet),	
 or	
 others	
 (in	
 future).	

-­‐n:	
 Check	
 without	
 modification.	
 'off'(default)	
 or	
 'on'.	

-­‐r:	
 Reset	
 scanning	
 start	
 position	
 to	
 the	
 device	
 beginning.	

-­‐s:	
 How	
 many	
 items	
 can	
 be	
 scanned	
 at	
 most	
 per	
 second.	
 ‘0'	
 means	
 no	
 limit	
 (default).	

-­‐t:	
 The	
 LFSCK	
 type(s)	
 to	
 be	
 started.	

Inode Iteration and OI Scrub

© 2012 Whamcloud, Inc.

Userspace tools (cont’d)

17

•  Stop LFSCK by command
lctl	
 lfsck_stop	
 <-­‐M	
 |	
 -­‐-­‐device	
 MDT_device>	
 [-­‐h	
 |	
 -­‐-­‐help]	

OPTIONS:	

-­‐M:	
 The	
 MDT	
 device	
 to	
 stop	
 LFSCK	
 on.	

-­‐h:	
 Help	
 information.	

•  Query LFSCK information by command
–  Every LFSCK component has its own special lproc interface
–  For OI scrub:

lctl	
 get_param	
 -­‐n	
 osd-­‐ldiskfs.${MDTDEV}.oi_scrub	

•  Adjust speed limit during LFSCK running
lctl	
 set_param	
 -­‐n	
 mdd.${MDTDEV}.lfsck_speed_limit=N	

Options:	

0:	
 no	
 speed	
 limit.	

Others:	
 scan	
 at	
 most	
 N	
 objects	
 per	
 second.	

Inode Iteration and OI Scrub

© 2012 Whamcloud, Inc.

New mount options – “noscrub”

18

•  Do not trigger OI scrub automatically
–  NOT start/resume OI scrub automatically when MDT mounts, even

though some OI inconsistency is detected.
–  Prevent OI scrub to be triggered automatically if some bad OI entry

is found during system service.

•  Ignore it if trigger OI scrub with user command
•  Can be overwritten by lproc interface after MDT

mount up
lctl	
 set_param	
 -­‐n	
 osd-­‐ldiskfs.${MDTDEV}.auto_scrub=N	

OPTIONS:	

0:	
 cannot	
 trigger	
 OI	
 scrub	
 automatically.	

Others:	
 can	
 trigger	
 OI	
 scrub	
 automatically	
 when	
 needed.	

Inode Iteration and OI Scrub

© 2012 Whamcloud, Inc.

•  Hardware: fat-intel-2 on Toro
–  CPU: 2 x Intel® Xeon® X5650 2.67GHz, Six-core Processor, 2-HT

for each core
–  RAM: 24GB DDR3 1333MHz
–  Disk: 250GB SATAII Enterprise Hard Drive
–  Journal: external journal on 8GB SSD

•  Configuration
–  Single MDT w/o OST and w/o client
–  Use 64 OI files on the MDT by default

•  Method
–  echo_client drives the MDT directly with 0-striped objects created

Tests

19 Inode Iteration and OI Scrub

© 2012 Whamcloud, Inc.

•  Method
–  Re-insert OI mapping entries after all OI files removed/recreated

Test1: scrub speed for OI files remove/recreate

20 Inode Iteration and OI Scrub

109
104 101

91
87

0

20

40

60

80

100

120

10 20 40 80 125

S
cr

u
b

 S
p

e
e
d

 (
x
 K

 f
il
e
s/

se
c)

Files Count (x 1M)

Performance for OI re-inserting

© 2012 Whamcloud, Inc.

•  Method
–  Update OI mapping entries after MDT restored from file-level backup

Test2: scrub speed for MDT backup/restore

21 Inode Iteration and OI Scrub

93
85 82 82 80

0

20

40

60

80

100

120

1 2 4 8 16

S
cr

u
b

 S
p

e
e
d

 (
x
 K

 f
il
e
s/

se
c)

Files Count (x 1M)

Performance for OI updating

© 2012 Whamcloud, Inc.

–  Create with OI scrub run background with kinds of speed limit (full
speed is about 20K/sec). The create is driven by echo_client with 64
threads for 2,560,000 files under per-thread based directories.

Test3: performance impact for create with non-
urgent (background) OI scrub

22 Inode Iteration and OI Scrub

47.661 47.439 47.525
46.475 46.761 46.849

44.806 44.849
43.461

40.956

25

30

35

40

45

50

55

0 1 2 3 4 5 10 15 20 -1

C
re

a
te

 s
p

e
e
d

 (
x
 K

fi
le

s/
se

c)

OI scrub speed limit (x Kfiles/sec)

Create performance with non-urgent OI scrub

 0: w/o OI scrub
-1: OI scrub w/o speed limit

© 2012 Whamcloud, Inc.

–  Create with OI scrub rebuilding different numbers of OI files. The
create is driven by echo_client with 64 threads for 2,560,000 files
under per-thread based directories.

Test4: performance impact for create with urgent
OI scrub

23 Inode Iteration and OI Scrub

47.661

42.485 42.599
41.369 42.023

40.863
39.799

41.146

25

30

35

40

45

50

55

0 1 2 4 8 16 32 64

C
re

a
te

 s
p

e
e
d

 (
x
 K

fi
le

s/
se

c)

OI files in rebuilding

Create performance with OI file(s) rebuilding

© 2012 Whamcloud, Inc.

•  Rebuilding OI files from empty state is faster
than updating the existing OI files.

•  Within 25% of the full speed of background OI
Scrub, the performance impacts for create is
less than 3%, almost can be ignored.

•  Under urgent OI scrub mode, the performance
impacts for create is about 15%. The tendency
between performance impact and OI files count
in rebuilding is not distinct.

Conclusions

24 Inode Iteration and OI Scrub

© 2012 Whamcloud, Inc.

Thank You

•  Fan Yong
Whamcloud, Inc.
yong.fan@whamcloud.com

Inode Iteration and OI Scrub

