[bookmark: _Toc232488538]Range Lock for Write

Range lock is used to solve the problem of single shared write performance. We’re suffering this problem because write holds inode mutex so it doesn’t help improve write performance to a shared file by increasing thread number. LLNL has already made progress on this at LU-1669.

First of all, to get better shared file performance, a few file level mutex have to be removed. On Lustre client, three mutex will be involved for write:

· inode mutex
Kernel uses inode mutex to maintain the atomicity of write. This problem can be solved by calling __generic_file_aio_write(), which is non-lock version of generic_file_aio_write(), in vvp_io_write_start().

Inode mutex is also used to exclude truncate and write. We can use lli_trunc_sem for this purpose instead.

· lli_write_mutex	
lli_write_mutex is worked out to keep posix compliance of Lustre. Lustre does write stripe by stripe, so we need this lock to make sure the whole user buffer from ll_file_write() is written to file atomically. This mutex won’t be needed if we adopt range lock in ll_file_write();

· lli_size_sem
[bookmark: _GoBack]This lock is used to modify i_size exclusively. It produces a problem for write path because it is grabbed in vvp_io_commit_write() unconditionally. This is not necessary if the write is successful. The code can be changed to get the file size only if the write fails and page is trying to extend the file, in that case we need to discard the page.

Secondly, range lock will be worked out to allow write to a shared file in parallel, while Posix compliance is still guaranteed. A range is defined as [start_index, end_index], where start_index and end_index represent the start and end page index respectively. Range lock is a lock to cover that specific region of a Lustre file. Range lock will be arranged as a red-black tree in vvp_object, with start_index as the key.

Range lock is acquired and released in ll_file_write().
Range lock data structure and Interfaces

We will use the kernel implementation at http://lwn.net/Articles/535843/

Now that the code is not in kernel tree yet, we can just copy the code from the patch and replace it in the future.
Write with range lock

After range lock is used, inode mutex free version of kernel generic write function __generic_aio_file_write() should be called in vvp_io_write_start().

Append write will acquire range lock of [0, EOF).

Write and truncate

Inode mutex was used to exclude write and truncate to the file. Now that write won’t take inode mutex any more, lli_trunc_sem will be used for this purpose. Before acquiring range lock, read mode of lli_trunc_sem must be acquired first in the write path. Truncate acquires write mode of lli_trunc_sem.

Actually another option for truncate is to acquire a range lock of [trunc_index, EOF), but this will make things complex as both page_mkwrite and VFS read need to exclude with truncate. I want to limit the range lock to be in write patch so far.

Lock order

The lock order will be:
1. lli_trunc_sem
2. Range lock
3. DLM lock
4. Inode mutex

We should check every use case of inode mutex to make sure everything is all right with this change.

Range Lock or Write

Range lock i s 1 e th bl of sinle shred e
pefomance, We'eSffring s problem becoue wre s nade
T3 o v o s ' i e Y
s tresd umber LN s ooy made Pogesson ths ¢
it

v e e, On i e, et e W o€ wved o

Kernal s 0000 mutx o maintai the tomity of wie, T
probem con b Sve by Calng - genarc - kel wheh
oo verionf gererk. e wrke)
SRk

s o s pepose meens -

L miten 5 worked ut o keep s camplanceof st
e Goe wie S by ey 50w e 1 ok o Mok
i e vt Bl o e) 3w o e
oty T ke o b noesed 6o ange ok
et

S kb o mosy _ie excusely. produces proviem
O W Dt Decaus € 5 G h .10, o wrke)

ode can be changed o get the fl iz only I the write fals and.
ot 2 ot St o i, Cov e o 0 e th

Seconly, rang ok wil e worked ot 1 aow w1 hare e
mparl], il s companc sl guaantad. Aranot s
ol ar e, o I, where st o oo nd_index
epresentthe s o cnd page e especely. Ramge k55
05T Covr ht Specic o of 8 Lot . Range 1k il b

