
Strided Extent Locking

Improving Shared File
Performance

Shared	 File	 vs	 FPP	
•  Two principal approaches to writing out data:

File-per-process or single shared file
•  File-per-process scales well in Lustre, shared

file does not
•  File-per-process has problems:
•  Heavy metadata load for large jobs
•  This isn’t getting better: ~250,000 cores on

current top 10 x86 machines
•  Heavy metadata load during the job and also

during post-processing

Shared	 File	 Scalability	

•  Maxes out at one client per OST
•  Going from one to two clients reduces

bandwidth dramatically, adding more after
two doesn’t help much

•  In real systems, OST can handle full
bandwidth of several clients (FPP hits these
limits)

•  For example, latest Seagate system OSTs
have enough bandwidth for 8+ Cray clients
per OST

Shared	 File	 Scalability	

•  Maxes out at one client per OST
•  In real systems, takes three or more

clients to max out bandwidth of an OST

Shared file IO

•  Common HPC applications use MPIIO library to
do ‘good’ shared file IO

•  Technique is called collective buffering
•  IO is aggregated to a set of nodes, each of which

handles parts of a file
•  Writes are strided, non-overlapping
•  Example: Client 1 is responsible for writes to block

0, block 2, block 4, etc., client 2 is responsible for
block 1, block 3, etc.

•  Currently arranged so each client writes to 1 OST

Why doesn’t shared file IO scale?

•  In ‘good’ shared file IO, writes are strided,
non-overlapping

•  Since writes don’t overlap, should be
possible to have multiple clients per OST
without contention

•  With > 1 client per OST, writes are serialized
due to extent lock design in Lustre

•  2+ clients are slower than one due to lock
contention

Extent Lock Contention

0	 1	 2	 3	 4	 5	 6	 7	 8	

•  Single OST view, also applies to individual
OSTs in a striped file

•  Two clients, doing strided writes
•  Client 1 asks to write segment 0 (Assume

stripe size segments)

Extent Lock Contention

0	 1	 2	 3	 4	 5	 6	 7	 8	

•  No locks on file currently
•  Server expands lock requested by client 1,

grants a lock on the whole file

Extent Lock Contention

0	 1	 2	 3	 4	 5	 6	 7	 8	

•  Client 2 asks to write segment 1
•  Conflicts with the expanded lock granted

to client 1

Extent Lock Contention

0	 1	 2	 3	 4	 5	 6	 7	 8	

•  Lock assigned to client 1 is called back
•  Client 2 lock request is processed…

Extent Lock Contention

0	 1	 2	 3	 4	 5	 6	 7	 8	

•  No locks on file currently!
•  Server expands lock request from client 2
•  Grants lock on whole file…

Extent Lock Contention

0	 1	 2	 3	 4	 5	 6	 7	 8	

•  Client 1 asks to write segment 2
•  Conflicts with the expanded lock granted

to client 2
•  Etc. Continues throughout IO.

Extent Lock Contention
•  Multiple clients per OST are completely

serialized
•  Even worse: Additional latency to

exchange lock
•  Mitigation: Clients generally write > 1

segment before giving up lock
•  Still slower than one client per OST

Extent Lock Contention
•  What about not expanding locks?
•  Avoids contention, clients can write in

parallel
•  Surprise: It’s actually worse
•  Extra latency required to get a lock for

every write destroys performance
•  That was the blue line at the very bottom

of the performance graph…

Strided Locks: Make the lock match
the IO pattern

0	 1	 2	 3	 4	 5	 6	 7	 8	

•  Imagine a type of lock which matches the IO
pattern (All of this is per OST)

•  Same situation: Client 1 asks to write segment 0
•  Client requests a strided lock (stride of 2) instead

of a normal extent lock…

Strided Locks: Make the lock match
the IO pattern

0	 1	 2	 3	 4	 5	 6	 7	 8	

•  Strided lock with a stride of 2, starting with
segment 0

•  Lock granted is periodic
•  Covers segment 0, 2, 4, etc, to EOF.
•  Lock match is defined as a modular function

Strided Locks: Make the lock match
the IO pattern

0	 1	 2	 3	 4	 5	 6	 7	 8	

•  Next, Client 2 asks for a strided lock with a
strided of 2, starting at segment 1

•  Covers segment 1, 3, 5,7, etc, to EOF.
•  Does NOT conflict with lock for client 1

What about Group Locks?
•  Lustre has an existing solution: Group locks
•  Basically turns off LDLM locking on a file for group

members, allows file-per-process performance for
group members

•  Tricky: Since lock is shared between clients, there
are write visibility issues (Clients assume they are
the only one with a lock, do not notice file updates
until the lock is released and cancelled)

•  Must fsync before releasing the lock & then
release the lock to get write visibility between
clients

What about Group Locks?
•  Works for some workloads, but not OK for

many others
•  Not really compatible with HDF5 and other

such file formats: 
In file metadata updates require write
visibility between clients during the IO

•  It’s possible to fsync and release the lock
after every write, but speed benefits are
lost

Strided Locks: Performance
•  Performance essentially equivalent to file-

per-process or group locks
•  Simpler to program for than group locks: 

No manual fsyncs 
No write visibility issues 
Doesn’t completely lock out other writers/
readers (Normal lock handling applies)

Strided Locks: Performance
•  Would like to have a graph here…
•  LU-6050: Can’t downgrade to 2.5 after

running master
•  Currently unable to test on large systems

at Cray, which are all using 2.5
•  Limited testing showed good (FPP

equivalent) performance

Strided Locks: MPIIO
•  Intended to match up with MPIIO collective

buffering feature described earlier, easy to
extend to > 1 client per OST

•  Freely available in the Lustre ADIO,
originally from Argonne, improved by CFS/
Sun

•  IOR –a MPIIO –c
•  Cray will make a Lustre ADIO patch

available

Strided Locks: MPIIO
•  Request strided behavior with an ioctl

specifying stride count (Writers per OST)
•  All writes to this file descriptor create

strided lock requests
•  Library would use a separate FD for non-

strided IO requests
•  Hides complexity from codes, they can

use MPIIO with collective buffering as
before

Strided Locks: Lock size
•  Locks are NOT expanded by server
•  Currently, strided locks are always given on

‘stripe size’ segments
•  Assumes any writes spanning multiple stripe

size segments are in error, generates non-
strided lock requests instead

•  Intended to match up with MPIIO aggregator
feature, which splits IO between aggregators
in stripe size chunks

Strided Locks: Implementation
•  LDLM layer locks: Takes advantage of

layering to modify mostly LDLM layer
•  Concept of striding exists only in LDLM

layer, higher layers of client are unaware
•  Stride argument lives in unused bytes of

extent version of ldlm_policy_data_t, so
doesn’t break network protocol

•  Will need to add compatibility flag

Strided Locks: Implementation
•  Depends on CLIO simplification changes

(2.7+)
•  Primarily LDLM layer, no significant

changes outside it
•  A few tweaks to OSC
•  Some sticky spots…

Strided Locks: Areas of concern
•  Lock matching
•  Page management on lock cancellation
•  Conflicting extent locks (Interval tree): 

Checking new strided locks against already
issued locks 
Checking new locks against strided locks

•  Glimpse lock (lvb and ofd_intent_policy)
•  Lock longevity & lock time outs
•  Lock weighing & known minimum size (KMS)
•  Possible issues with replay?

Strided Locks: Lock Matching
•  Lock matching is a little tricky, but can be

handled with modular arithmetic
•  IO which expects a strided lock will not

match non-strided locks
•  Non-strided IO can use strided locks
•  Strided locks only match other strided

locks of the same stride (If strides are
different, it’s a different IO)

•  Lock overlap is also manageable

Strided Locks: Page management
•  Page management on lock cancellation
•  Currently, LDLM layer passes an extent up in

to OSC layer and asks that all pages in that
extent be handled as appropriate

•  Solution: Every time an IO uses a strided
lock, add the extent of the IO to a list of used
extents in the LDLM lock

•  Pass each of these used extents up in to
OSC layer using existing machinery

•  Implemented in prototype, seems to work

Group Locks: Page Management
•  A quick digression…
•  The same page management trick might be

applicable to group locks
•  Group locks currently require an fsync before

releasing the lock
•  Tracking extents modified under the group

lock could potentially remove the need for an
fsync

•  Easier for user space, possibly a bit faster
•  Doesn’t solve the write visibility problem

Strided Locks: Conflicting locks
•  In some ways, the trickiest part
•  Conflicting locks are currently identified

using a per-file red-black tree of extents
(one tree for each lock mode)

•  Sorting property of the tree requires that
extents are contiguous, strided locks
violate this

•  Can’t use the tree for these…

Strided Locks: Conflicting locks
•  Use a list, like is done for waiting locks
•  Probably a list of granted strided locks
•  Consider: A new non-strided lock
•  Check it against the extent trees in the

normal manner, then against the list of
strided locks

•  Strided lock count is just writers per OST,
so list length should be acceptable

Strided Locks: Conflicting locks
•  Consider: A new strided lock
•  First check it against the list of strided

locks
•  For non-strided locks, walk the tree to

identify all locks which start after the
strided lock

•  All of these are potentially conflicting
•  Check these against the strided lock one-

by-one, handle conflicts as they come up

Strided Locks: Conflicting locks
•  Strided locks conflict with any strided locks

not of the same stride
•  Combined with strided locks always using

stripe size for the segment size, this makes
identifying conflicts easy

•  If the first extent of whichever lock starts later
in the file does not conflict, the two locks do
not conflict

•  This is explained in detail in code comments
& in forthcoming design doc

Strided Locks: Other concerns
•  Lock longevity: Possible timeout issues?

Group locks are exempt from timeouts
•  Replay: Are there issues with replay that

aren’t covered by changes to LDLM?
•  Lock weighing/KMS: The purpose and

methods of lock weighing and KMS aren’t
clear to me  
Seems like list of dirtied extents could be
used

Strided Locks: Other concerns
•  Glimpse lock and ofd_intent_policy are

murky as well, not sure how or if they need
to change

•  Testing: Need to work up a thorough test
suite for these

•  Minor: Getting stripe dimensions in to
LDLM layer for lock request, minor
layering violation (and where to put it?)

Questions
•  Have I missed a major reason this idea is

unworkable?
•  Comments on my areas of concern: Page

management, lock contention, lock
longevity, replay, lock weighing?

•  Specific issues with the design as
presented?

Other Information
•  Detailed design doc will be forthcoming,

explains math behind matching & overlap
•  Prototype code, a patch against master, is

here: LU-6148  
Very much a prototype, mainly for design
discussion (Not even fully implemented yet)

•  Thank you to Cray engineers David Knaak
Bob Cernohous for the idea and assistance
testing

