ee
CRANY
)

Strided Extent Locking

Improving Shared File
Performance

®e
CRANY
b

Shared File vs FPP 3

Two principal approaches to writing out data:
File-per-process or single shared file

File-per-process scales well in Lustre, shared
file does not

File-per-process has problems:
Heavy metadata load for large jobs

This isn’t getting better: ~250,000 cores on
current top 10 x86 machines

Heavy metadata load during the job and also
during post-processing

®e
CRANY
b

Shared File Scalability ~

Maxes out at one client per OST

Going from one to two clients reduces
bandwidth dramatically, adding more after
two doesn’t help much

In real systems, OST can handle full
bandwidth of several clients (FPP hits these
imits)

~or example, latest Seagate system OSTs
nave enough bandwidth for 8+ Cray clients
per OST

\

BW MiB/sec

1 Stripes (Pattern 1) ()

C/RANY
b

1000

800

600

400

200

\

T
Independent
Shared

Writers/0ST

®e
CRANY
b

Shared file 10 i

Common HPC applications use MPIIO library to
do ‘good’ shared file 10

Technique is called collective buffering

O is aggregated to a set of nodes, each of which
handles parts of a file

Writes are strided, non-overlapping

Example: Client 1 is responsible for writes to block
0, block 2, block 4, etc., client 2 is responsible for
block 1, block 3, etc.

Currently arranged so each client writes to 1 OST

®e
CRANY
b

Why doesn’t shared file IO scale? %

In ‘good’ shared file 10, writes are strided,
non-overlapping

Since writes don’t overlap, should be
possible to have multiple clients per OST
without contention

With > 1 client per OST, writes are serialized
due to extent lock design in Lustre

2+ clients are slower than one due to lock
contention

e e
CRANY
b

Extent Lock Contention A

—

0 1 2 3 4 5 6 7 8

. Sln%le OST view, also applies to individual
sina strlped file

» Two clients, doing strided writes

» Client 1 asks to write segment 0 (Assume
stripe size segments)

CRANY
!

Extent Lock Contention g

* No locks on file currently

« Server lock requested by client 1,
grants a lock on the whole file

CRANY
!

Extent Lock Contention R

L | L L i L
0 1 2 3 4 5 6 7 8

 Client 2 asks to write segment 1

 Conflicts with the expanded lock granted
to client 1

CRANY
!

Extent Lock Contention g

%

0 1 2 3 4 5 6 7 8

* Lock assigned to client 1 is called back
» Client 2 lock request is processed...

CRANY
!

Extent Lock Contention g

0 1 2 3 4 5 6 7 8

* No locks on file currently!
» Server expands lock request from client 2
« Grants lock on whole file...

CRANY
!

Extent Lock Contention R

0 1 2 3 4 5 6 7 8

 Client 1 asks to write segment 2

 Conflicts with the expanded lock granted
to client 2

« Etc. Continues throughout 10.

®e
CRANY
b

Extent Lock Contention

Multiple clients per OST are completely
serialized

Even worse: Additional latency to
exchange lock

Mitigation: Clients generally write > 1
segment before giving up lock

Still slower than one client per OST

®e
CRANY
b

Extent Lock Contention !

What about not expanding locks?

Avoids contention, clients can write In
parallel

Surprise: It’s actually worse

Extra latency required to get a lock for
every write destroys performance

That was the blue line at the very bottom
of the performance graph...

Strided Locks: Make the lock mat¢h ™
the 10 pattern ‘

\

_—

0 1 2 3 4 5 6 7 8

 Imagine a type of lock which matches the IO
pattern (All of this is per OST)

« Same situation: Client 1 asks to write segment 0

» Client requests a strided lock (stride of 2) instead
of a normal extent lock...

Strided Locks: Make the lock mat¢h ™
the 10 pattern ‘

>
| | |

.

0 1 2 3 4 5 6 7 8

 Strided lock with a stride of 2, starting with
segment 0

» Lock granted is periodic
» Covers segment 0, 2, 4, etc, to EOF.
* Lock match is defined as a modular function

Strided Locks: Make the lock mat¢h ™
the 10 pattern ‘

I I l

| | |

0 1 2 3 4 5 6 7 8

 Next, Client 2 asks for a strided lock with a
strided of 2, starting at segment 1

« Covers segment 1, 3, 5,7, etc, to EOF.
 Does NOT conflict with lock for client 1

®e
CRANY

What about Group Locks? *

Lustre has an existing solution: Group locks

Basically turns off LDLM locking on a file for group
members, allows file-per-process performance for
group members

Tricky: Since lock is shared between clients, there
are write visibility issues (Clients assume they are
the only one with a lock, do not notice file updates
until the lock is released and cancelled)

Must fsync before releasing the lock & then
release the lock to get write visibility between

clients

®e
CRANY
b

What about Group Locks? 3

 Works for some workloads, but not OK for
many others

* Not really compatible with HDF5 and other
such file formats:
In file metadata updates require write
visibility between clients during the 10

* It’s possible to fsync and release the lock

after every write, but speed benefits are
lost

®e
CRANY
b

Strided Locks: Performance °

* Performance essentially equivalent to file-
per-process or group locks

« Simpler to program for than group locks:
No manual fsyncs
No write visibility issues
Doesn’t completely lock out other writers/
readers (Normal lock handling applies)

®e
CRANY
b

Strided Locks: Performance

Would like to have a graph here...

LU-6050: Can’t downgrade to 2.5 after
running master

Currently unable to test on large systems
at Cray, which are all using 2.5

Limited testing showed good (FPP
equivalent) performance

®e
CRANY
b

Strided Locks: MPIIO

Intended to match up with MPIIO collective
buffering feature described earlier, easy to
extend to > 1 client per OST

Freely available in the Lustre ADIO,
originally from Argonne, improved by CFS/

Sun
IOR —a MPIIO —

Cray will make a Lustre ADIO patch
available

®e
CRANY
b

Strided Locks: MPIIO 3

Request strided behavior with an ioctl
specifying stride count (Writers per OST)

All writes to this file descriptor create
strided lock requests

Library would use a separate FD for non-
strided 10 requests

Hides complexity from codes, they can
use MPIIO with collective buffering as
before

CRANY
b

Strided Locks: Lock size

Locks are NOT expanded by server

Currently, strided locks are always given on
‘stripe size’ segments

Assumes any writes spanning multiple stripe
Size segments are in error, generates non-
strided lock requests instead

Intended to match up with MPIIO aggregator
feature, which splits 10 between aggregators
in stripe size chunks

\

\

®e
CRANY
b

Strided Locks: Implementation

LDLM layer locks: Takes advantage of
layering to modify mostly LDLM layer

Concept of striding exists only in LDLM
layer, higher layers of client are unaware

Stride argument lives in unused bytes of
extent version of IdIm_policy_data_t, so
doesn’t break network protocol

Will need to add compatibility flag

e e
CRANY
b

Strided Locks: Implementation®

* Depends on CLIO simplification changes
(2.7+)

* Primarily LDLM layer, no significant
changes outside it

« Afew tweaks to OSC
» Some sticky spots...

®e
CRANY
b

Strided Locks: Areas of concern

» Lock matching
 Page management on lock cancellation

» Conflicting extent locks (Interval tree):
Checking new strided locks against already
issued locks

Checking new locks against strided locks

» Glimpse lock (lvb and ofd_intent_policy)

* Lock longevity & lock time outs

 Lock weighing & known minimum size (KMS)
» Possible issues with replay?

®e
CRANY
b

Strided Locks: Lock Matching *

Lock matching is a little tricky, but can be
handled with modular arithmetic

IO which expects a strided lock will not
match non-strided locks

Non-strided IO can use strided locks

Strided locks only match other strided
locks of the same stride (If strides are
different, it’s a different |O)

Lock overlap is also manageable

CRANY
b

Strided Locks: Page management

Page management on lock cancellation

Currently, LDLM layer passes an extent up in
to OSC layer and asks that all pages in that
extent be handled as appropriate

Solution: Every time an IO uses a strided
lock, add the extent of the 10 to a list of used
extents in the LDLM lock

Pass each of these used extents up in to
OSC layer using existing machinery

Implemented in prototype, seems to work

CRANY
b

Group Locks: Page Management*

A quick digression...

The same page management trick might be
applicable to group locks

Group locks currently require an fsync before
releasing the lock

Tracking extents modified under the group
lock could potentially remove the need for an
fsync

Easier for user space, possibly a bit faster
Doesn’t solve the write visibility problem

®e
CRANY
b

Strided Locks: Conflicting locks

* In some ways, the trickiest part

 Conflicting locks are currently identified
using a per-file red-black tree of extents
(one tree for each lock mode)

» Sorting property of the tree requires that
extents are contiguous, strided locks
violate this

« Can’t use the tree for these...

®e
CRANY
b

Strided Locks: Conflicting locks

Use a list, like is done for waiting locks
Probably a list of granted strided locks
Consider: A new non-strided lock

Check it against the extent trees in the
normal manner, then against the list of
strided locks

Strided lock count is just writers per OST,
so list length should be acceptable

®e
CRANY
b

Strided Locks: Conflicting locks

Consider: A new strided lock

First check it against the list of strided
locks

For non-strided locks, walk the tree to
identify all locks which start after the
strided lock

All of these are potentially conflicting

Check these against the strided lock one-
by-one, handle conflicts as they come up

CRANY
b

Strided Locks: Conflicting locks

Strided locks conflict with any strided locks
not of the same stride

Combined with strided locks always using
stripe size for the segment size, this makes
identifying conflicts easy

If the first extent of whichever lock starts later
in the file does not conflict, the two locks do
not conflict

This is explained in detail in code comments
& in forthcoming design doc

®e
CRANY
b

Strided Locks: Other concerns®

* Lock longevity: Possible timeout issues?
Group locks are exempt from timeouts

* Replay: Are there issues with replay that
aren’t covered by changes to LDLM?

* Lock weighing/KMS: The purpose and
methods of lock weighing and KMS aren’t
clear to me
Seems like list of dirtied extents could be
used

®e
CRANY
b

Strided Locks: Other concerns®

* Glimpse lock and ofd_intent_policy are
murky as well, not sure how or if they need
to change

» Testing: Need to work up a thorough test
suite for these

* Minor: Getting stripe dimensions in to
LDLM layer for lock request, minor
layering violation (and where to put it?)

®e
CRANY
b

Questions !

 Have | missed a major reason this idea is
unworkable?

« Comments on my areas of concern: Page
management, lock contention, lock
longevity, replay, lock weighing?

» Specific issues with the design as
presented?

®e
CRANY
b

Other Information !

 Detailed design doc will be forthcoming,
explains math behind matching & overlap

* Prototype code, a patch against master, is
here: LU-6148
Very much a prototype, mainly for design
discussion (Not even fully implemented yet)

» Thank you to Cray engineers David Knaak
Bob Cernohous for the idea and assistance

testing

