
1

Lustre Protocol Documentation
Andrew Uselton <andrew.c.uselton@intel.com>

Revision History
Revision 0.0 January 2015 ACU

Table of Contents
1. Introduction .. 2
2. Lustre Messages .. 2

2.1. Lustre Operations ... 2
2.2. Message Formats .. 3
2.3. Structures .. 3
2.4. Endianness .. 4
2.5. The Message Header lustre_msg_v2 ... 4

3. Shared State Between Clients and Servers ... 5
4. Namespace Operations .. 5

4.1. Mount .. 5
5. Data Movement Operations .. 6
6. State Management ... 6

6.1. Connect ... 6
Glossary .. 6
A. Structures .. 7

A.1. lu_fid .. 7
A.2. lustre_handle .. 8
A.3. obd_connect_data ... 8
A.4. ost_id .. 12
A.5. ptlrpc_body .. 12

B. Message Formats .. 14
C. Message Pairs ... 24
D. Concepts .. 27
E. License ... 27
Bibliography ... 27

The Lustre parallel file system provides a global POSIX namespace for the computing resources
of a data center. Lustre runs on Linux-based hosts via kernel modules, and delegates block storage
management to the back-end servers while providing object-based storage to its clients. Servers
are responsible for both data objects (the contents of actual files) and index objects (for directory
information). Data objects are gathered on Object Storage Servers (OSSs), and index objects are stored
on MetaData Storage Servers (MDSs). Each back-end storage volume is a target with Object Storage
Targets (OSTs) on OSSs, and MetaData Storage Targets (MDTs) on MDSs. Clients assemble the data
from the MDT(s) and OST(s) to present a single coherent POSIX-compliant file system. The clients and
servers communicate and coordinate among themselves via network protocols. A low-level protocol,
LNet, abstracts the details of the underlying networking hardware and presents a uniform interface,
originally based on Sandia Portals [PORTALS], to Lustre clients and servers. Lustre, in turn, layers its
own protocol PtlRPC atop LNet. This document describes the Lustre protocols, including how they are
implemented via PtlRPC and the Lustre Distributed Lock Manager (based on the VAX/VMS Distributed

Lustre Protocol Documentation

2

Lock Manager). This document does not describe Lustre itself in any detail, except where doing so
explains concepts that allow this document to be self-contained.

1. Introduction
Lustre runs across multiple hosts, coordinating the activities among those hosts via the exchange of
messages over a network. On each host, Lustre is implemented via a collection of Linux processes
(often called "threads"). This discussion will refer to a more formalized notion of processes that
abstract some of the thread-level details. The description of the activities on each host comprise
a collection of abstract processes. Each abstract process may be thought of as a state machine, or
automaton, following a fixed set of rules for how it consumes messages, changes state, and produces
other messages. The behavior of a process is shorthand for the management of its state and the rules
governing what messages it can consume and produce. Processes communicate with each other via
messages. The Lustre protocol is the collection of messages the processes exchange along with the
rules governing the behavior of those processes.

In order to understand the Lustre protocol it is helpful to begin with a description of messages being
exchanged. Lustre uses a particular format for its messages called PtlRPC. A PtlRPC message is
a sequence of bytes in a particular order and with specific meaning associated with bytes in the
message. The message (sequence of bytes) is delivered to a lower level communication mechanism
called LNet in order to be transported from one host to another. This document will not discuss LNet
beyond identifying it as a transport layer that abstracts any underlying details of the actual networking
hardware.

The following discussion is intended to be self-contained, in that additional external documents are
not necessary in order for one to understand (and indeed implement) the behaviors and messages
described. Nevertheless, for the interested there will be occasional references directly into the Lustre
code-base where one may see the protocol as it is realized in one particular implementation, that being
Lustre-2.6.92-0 as pulled from the git repository for Lustre on January 26th, 2015. The sole exception
to the rule that this document is self-contained is that the discussion will not be burdened by the actual
numerical values for hard-coded implementation details like "magic" value numbers or flags and
their fields. References to the source code will be provided as needed for a prospective (otherwise)
black-box implementer to build a compatible implementation. This document will confine itself to the
symbolic values.

2. Lustre Messages
The PtlRPC-based communication in Lustre is in the form of pairs of messages exchanged between
hosts. One host sends a request message to another and awaits a reply from that other host. Leaving
aside errors, lost messages, and host failures, this request and reply interaction forms the basis for
implementing the Lustre protocol.

2.1. Lustre Operations

Each pair of messages corresponds to some useful operation and is given a name in the Lustre sources.
For example MDS_CONNECT names a pair of messages whose operation is to establish a connection
from the requesting host to a given MDS. This document will use those names (or easily recognized

Lustre Protocol Documentation

3

variants) to refer to the message pairs. The names are simply a convenience and have no direct role
in the protocol. Note that the Lustre wireshark extension does use these names when reporting what
messages are being exchanged. The "Message Pairs" appendix lists all the operations Lustre uses
along with the names of the request and rely messages to carry out each operation.

The request and reply messages are PtlRPC messages. Each of Lustre’s PtlRPC-based messages is a
sequence of bytes. It can vary in length and has additional structure, but its simplest expression is just
a byte array. The bytes of a message can be divided into an initial "header" and one or more "buffers"
that follow the header. This section ends with a detailed discussion of the header.

2.2. Message Formats

The sequence of buffers in a given message are arranged in a particular format, and there are
several distinct message formats with each format given a symbolic name in the sources. For
example the symbols for the two messages implementing the "MDS_CONNECT" operation are
"obd_connect_client" and "obd_connect_server". For convenience, this document uses those names
when referring to particular message formats. The "Message Formats" appendix details how Lustre’s
messages are organized.

In many cases the host initiating a request will be a Lustre client, but that is not universally the case.
For example, a lock call-back might be initiated by the MDS and the request sent from the MDS
to a Lustre client. In other cases the message request is between two Lustre servers. Following the
conventions in the Lustre source code, many of the message formats employ the words "client" or
"server" in the format’s name. This can be misleading. Such "client" messages are not necessarily sent
from Lustre clients, and such "server" messages are not necessarily replies sent from Lustre servers. A
format with the word "client" should always be thought of simply as the format of a message initiating
a request. Likewise, a "server" format simply means the format for a message in reply to a request,
whatever the actual host that sends the reply.

2.3. Structures

Each message format names a list of structures, where each structure provides the content to be filled
into the corresponding buffer. For example, the sequence of structures for the obd_connect_client
format is: ptlrpc_body, obd_uuid, obd_uuid, lustre_handle, and obd_connect_data. A named structure,
in turn, gives details about the sequence of bytes for that portion of the message. Most, but not all,
of these named structures correspond directly to C struct definitions and can be found in the lustre/
include/lustre directory in the files lustre_idl.h and lustre_user.h. In those cases the structure has
a sequence of fields, which also have names and a semantics. In some cases the name does not
correspond to a struct, but gives some other indication of its form: perhaps a union or an unsigned 32-
bit integer. The complete list of named structures and their content are in the "Structures" appendix.

Every format begins with the structure "ptlrpc_body". That structure gives additional details that will
assist the receiver with decoding the rest of the message. This includes, especially, the pb_opc field
for the op code corresponding to the operation being requested.

Note especially that when a operation calls for a message format that is "empty", that does not mean
that no request is sent or no reply expected. The "empty" format consists of a ptlrpc_body (together
with the header) and nothing else.

Lustre Protocol Documentation

4

2.4. Endianness
In a heterogeneous hardware environment it is possible that two hosts supporting or mounting the
Lustre file system may differ in their "endianness". This would be true for "x86_64" hosts versus
"powerpc" hosts. The convention for Lustre protocol messages is that they are encoded in the endian
convention of the sender, that is, the host initiating the request and expecting a reply. When a message
is received on a host and it is encoded in the "other" endianness convention, the byte order has to be
swapped across the whole message before it can be decoded. That process is known as "swabbing".

2.5. The Message Header lustre_msg_v2
The "lustre_msg_v2" structure gives the sequence of fields in the header to a Lustre message. Its main
task is to tell how many buffers will follow. The header is divided into a sequence of eight 4-byte
"fields" (32-bit unsigned integers) followed by a variable length sequence of additional 4-byte entries
organized as an array.

Table 1. lustre_msg_v2

type field

__u32 lm_bufcount

__u32 lm_secflvr

__u32 lm_magic

__u32 lm_repsize

__u32 lm_cksum

__u32 lm_flags

__u32 lm_padding_2

__u32 lm_padding_3

__u32 lm_buflens[0]

lm_bufcount gives the number of buffers that will follow the header. The form and content of these
buffers is determined by the message format.

lm_secflvr is an indication of whether any sort of cryptographic encoding of the subsequent buffers
will be in force. The value is zero if there is no "crypto" and gives a code identifying the "flavor"
of crypto if it is employed. Further, if crypto is employed there will only be one buffer following
(i.e. bufcount = 1), and that buffer is an encoding of another full PtlRPC message with its own
struct lustre_msg_v2 header and sequence of buffers. This document will defer all discussion of
cryptography. An addendum is planned that will address it separately.

lm_magic serves three purposes. First, the value must be recognizable as one of the possible
"magic" values or the message is presumed to be corrupted. Second, the two recognizable values,
LUSTRE_MSG_MAGIC_V1 and LUSTRE_MSG_MAGIC_V2 distinguish between the two possible
Lustre protocol versions (and version 1 is obsolete). Third, the magic values asymmetric under byte
ordering (big-endian encodings of them are different from little-endian encodings), so looking at
the values reveals if the sender has a byte ordering convention different from the receiver. See the
discussion on "swabbing".

Lustre Protocol Documentation

5

lm_repsize in a reply is zero. In request it gives an indication of the maximum available space that has
been set aside for the reply to the request. A reply that attempts to use more than that much space will
be discarded by LNet.

lm_cksum is a checksum (CRC-32) of the header, including any padding (see below) but not including
the additional buffers. The checksum is only used for early reply messages.

lm_flags is constructed by or-ing the two values MSGHDR_AT_SUPPORT and
MSGHDR_CKSUM_INCOMPAT18. MSGHDR_AT_SUPPORT is set if the sender understands
Adaptive Timeouts and can receive early replies for a request. MSGHDR_CKSUM_INCOMPAT18
is set if the lm_cksum field is computed for only the first 88 bytes (sizeof(lustre_msg_v1)) or the full
sizeof(lustre_msg_v2).

lm_padding_2 and lm_padding_3 are two 4-byte fields reserved for future use. Note also that the
following array must be aligned on a 8-byte boundary, so the padding fields are included as a pair.

lm_buflens[] is an array of 4-byte unsigned integers with lm_bufcount entries. Each entry corresponds
to, and gives the length of, one of the buffers that will follow and that constitute the remainder of the
message. The length of the ith buffer is given by the field lm_buflens[i], and the buffers themselves
follow any needed padding.

The first of the buffers following the header must be aligned on a 8-byte boundary. Since the length
of the lm_buflens array is in increments of four bytes we may need four additional bytes of padding
before the first buffer.

3. Shared State Between Clients and
Servers

Shared state between clients and servers is implemented via the server "export" and the client "import"
along with lock structures.

4. Namespace Operations

4.1. Mount
The mount operation is initiated on a client and requires Lustre services to already be in place (on the
servers). In order to know what services are available the client must first find out from the MGS what
the current configuration is.

Messages Between the Client and the MGS

In order to be able to mount the Lustre file system the client needs to know the identities of the
various servers and targets so that it can initiate connections to them. More details to follow.

Messages Between the Client and the MDSs

Once the client knows about the MDS and its MDTs it begins connecting to the MDTs one-by-one.
An MDT connect is carried out by the exchange of four message pairs. Each of the mesage pair

Lustre Protocol Documentation

6

carries out one operation. The four operations involved are named MDS_CONNECT, MDS_STATFS,
MDS_GETSTATUS, and MDS_GETATTR, in that order. Note that while the names used (in the
Lustre wireshark extension, for example) talk about MDS_CONNECT, etc., the operation is actually
connecting to an MDT. If there are multiple MDTs the process is repeated for each one.

The MDS_CONNECT operation (see the "Message Pairs" appendix) is initiated by the client with
the request message obd_connect_client, to which the server replies with an obd_connect_server
message. The obd_connect_client message has a format (see the "Message Formats" appendix) that
begins with the structure ptlrpc_body, followed by two obd_uuid structures, a lustre_handle structure,
and finally an obd_connect_data structure. The first obd_uuid identifies the target and the second
identifies the client. The lustre_handle holds a "cookie" that uniquely identifies this connection
request, so the client can recognize the server’s reply and distinguish that reply from any other replies
to connection requests.

The ptlrpc_body and obd_connect_data structures (see the "Structures" appendix) contain numerous
fields that establish, for example, the (requested) capabilities for the file system to be mounted, its
versions, and other properties.

The MDS_STATFS operation…

The MDS_GETSTATUS operation…

The MDS_GETATTR operation…

Messages Between the Client and the OSSs

Additional CONNECT message flow between the client and each OST enumerated by the MGS.

5. Data Movement Operations
Messages moving data between clients and object servers (OSSs) are the mechanism for performing
bulk I/O in Lustre.

6. State Management

6.1. Connect
The client connect process…

Glossary
Here are some common terms used in discussing Lustre, POSIX semantics, and the protocols used to
implement them.

Object Storage Server An object storage server (OSS) is a computer responsible for running
Lustre kernel services in support of managing bulk data objects on the
underlying storage. There can be multiple OSSs in a Lustre file system.

Lustre Protocol Documentation

7

MetaData Server A metadata server (MDS) is a computer responsible for running the
Lustre kernel services in support of managing the POSIX-compliant
name space and the indices associating files in that name space with
the locations of their corresponding objects. As of v2.4 there can be
multiple MDSs in a Lustre file system.

Object Storage Target An object storage target (OST) is the service provided by an OSS that
mediates the placement of data objects on the specific underlying file
system hardware. There can be multiple OSTs on a given OSS.

MetaData Target A metadata target (MDT) is the service provided by an MDS that
mediates the management of name space indices on the underlying file
system hardware. As of v2.4 there can be multiple MDTs on an MDS.

server A computer providing a service, such as an OSS or an MDS

target Storage available to be served, such as an OST or an MDT. Also the
service being provided.

protocol An agreed upon formalism for communicating between two entities,
such as between two servers or between a client and a server.

client A computer taking advantage of a service provided by a server, such
as a Lustre client using MDS(s) and OSS(s) to assemble a POSIX-
compliant file system with its namespace and data storage capabilities.

PtlRPC The protocol (or set of protocols) implemented via RPCs that is (are)
employed by Lustre to communicate between its clients and servers.

Remote Procedure Call A mechanism for implementing operations involving one computer
acting on the behalf of another (RPC).

LNet A lower level protocol employed by PtlRPC to abstract the mechanisms
provided by various hardware centric protocols, such as TCP or
Infiniband.

A. Structures
The structures listed here give the field names and sizes for portions of Lustre messages. The message
formats list which structures go into each type message and in what order.

A.1. lu_fid

Table A.1. lu_fid

type field

__u64 f_seq

__u32 f_oid

__u32 f_ver

Lustre Protocol Documentation

8

A.2. lustre_handle

Table A.2. lustre_handle

type field

__u64 cookie

A struct lustre_handle contains a single 64-bit field called a cookie. The cookie is used to identify
shared state objects (import and exports, DLM locks, etc.) between clients and servers.

A.3. obd_connect_data

Table A.3. obd_connect_data

type field

__u64 ocd_connect_flags

__u32 ocd_version

__u32 ocd_grant

__u32 ocd_index

__u32 ocd_brw_size

__u64 ocd_ibits_known

__u8 ocd_blocksize

__u8 ocd_inodespace

__u16 ocd_grant_extent

__u32 ocd_unused

__u64 ocd_transno

__u32 ocd_group

__u32 ocd_cksum_types

__u32 ocd_max_easize

__u32 ocd_instance

__u64 ocd_maxbytes

__u64 padding1

__u64 padding2

__u64 padding3

__u64 padding4

__u64 padding5

__u64 padding6

__u64 padding7

__u64 padding8

Lustre Protocol Documentation

9

type field

__u64 padding9

__u64 paddingA

__u64 paddingB

__u64 paddingC

__u64 paddingD

__u64 paddingE

__u64 paddingF

ocd_connect_flags are the flags the client and the server use to establish agreement about the services
the target OBD can provide to the client. The client request message will propose a set of the flags and
the server will reply with the subset it agrees to support for the given target. The complete list of flags
is:

Table A.4. ocd_connect_flags

OBD_CONNECT_RDONLY

OBD_CONNECT_INDEX

OBD_CONNECT_MDS

OBD_CONNECT_GRANT

OBD_CONNECT_SRVLOCK

OBD_CONNECT_VERSION

OBD_CONNECT_REQPORTAL

OBD_CONNECT_ACL

OBD_CONNECT_XATTR

OBD_CONNECT_CROW

OBD_CONNECT_TRUNCLOCK

OBD_CONNECT_TRANSNO

OBD_CONNECT_IBITS

OBD_CONNECT_JOIN

OBD_CONNECT_ATTRFID

OBD_CONNECT_NODEVOH

OBD_CONNECT_RMT_CLIENT

OBD_CONNECT_RMT_CLIENT_FORCE

OBD_CONNECT_BRW_SIZE

OBD_CONNECT_QUOTA64

OBD_CONNECT_MDS_CAPA

OBD_CONNECT_OSS_CAPA

OBD_CONNECT_CANCELSET

Lustre Protocol Documentation

10

OBD_CONNECT_SOM

OBD_CONNECT_AT

OBD_CONNECT_LRU_RESIZE

OBD_CONNECT_MDS_MDS

OBD_CONNECT_REAL

OBD_CONNECT_CHANGE_QS

OBD_CONNECT_CKSUM

OBD_CONNECT_FID

OBD_CONNECT_VBR

OBD_CONNECT_LOV_V3

OBD_CONNECT_GRANT_SHRINK

OBD_CONNECT_SKIP_ORPHAN

OBD_CONNECT_MAX_EASIZE

OBD_CONNECT_FULL20

OBD_CONNECT_LAYOUTLOCK

OBD_CONNECT_64BITHASH

OBD_CONNECT_MAXBYTES

OBD_CONNECT_IMP_RECOV

OBD_CONNECT_JOBSTATS

OBD_CONNECT_UMASK

OBD_CONNECT_EINPROGRESS

OBD_CONNECT_GRANT_PARAM

OBD_CONNECT_FLOCK_OWNER

OBD_CONNECT_LVB_TYPE

OBD_CONNECT_NANOSEC_TIME

OBD_CONNECT_LIGHTWEIGHT

OBD_CONNECT_SHORTIO

OBD_CONNECT_PINGLESS

OBD_CONNECT_FLOCK_DEAD

OBD_CONNECT_DISP_STRIPE

OBD_CONNECT_OPEN_BY_FID

ocd_version provides the Lustre version. A macro actually composes the value based on makor,
minor, and release numbers.

ocd_grant will always be zero in a request. It is only used in replies for OSTs, where it will set the
initial size of the grant for the client for that OST. The grant is a promise made by the OSS that data
cached on the client, up to this amount, will be guaranteed to have a destination on the server when it
comes time for the client to clear that cache. When the cache grant has been consumed on the client it

Lustre Protocol Documentation

11

must block further write requests. The grant can be increased again by subsequent messages from the
server.

ocd_index provides the LOV index (for example the 0000 in lustrefs-OST0000) for a given target.
This is only used for OSTs at this point. The MGS has already supplied both UUIDs and LOV indices
for each target, so this value is a cross check that the client and the server both agree that the given
UUID corresponds ot the same index.

ocd_brw_size is the size of the largest supported RPC. The client send a request with the largest it is
willing to handle and the server replies with the smaller of the clients or its own value.

ocd_ibits_known is used to establish agreement between the client and the server about if and how
locks can lock inode bits. The client request proposes a value and the server either agrees or further
restricts it.

ocd_blocksize is only used in reply messages from the server. For a given target, this is the log-
based-2 size of the fiel system.

ocd_inodespace is only used in reply messages from the server. this tells the client how big inodes are
on the target.

ocd_grant_extent is only used in reply messages from the server. It also relates to client write-cache.
In this case, there is (or may be) some overhead associated with writing each extent on the target.
This is true, for example, in ZFS. The server informs the client of the extra overhead it must use in
calculating how much of its grant has been consumed.

ocd_unused is unused.

ocd_transno is only used in replies from the server. It allows the server to inform the client about the
last transaction the server had seen for the given target from that client.

ocd_group is used for MDS to OSS connections. With the advent of multiple MDTs on an MDS
the MDS must keep track of the group (a backend filesystem directory on the OSS) being used to
organize the name space of objects for a given OST.

ocd_cksum_types identifies the checksum methods a client can use in communication with an OSS.
The client proposes the ones it is willing to use and the server selects the one it determines is best. The
selected method is used to checksum data being sent between the client and the OSS.

ocd_max_easize is zero in a request. The server replies with the value appropriate to the given target.
It governs the space being allocated in support of extended attibutes (EAs). Since stripe information is
encoded in EAs it is an optimization to use less space if possible. If the target only supports or needs a
limited stripe count, then the EA can be smaller than its maximum possible size.

ocd_instance is used only in replies by the MGS to other servers. It reports a value maintained on the
MGS for the given server. As a server reconnects the MGS will increment this value (if appropriate).
In imperative recovery the MGS can then proactively signal clients to reconnect to the server if
needed.

ocd_maxbytes is only used in replies to a client request. It informs the client of the maximum size a
stripe can grow to for the given target. This is essentially the size of the backend file system on the
target.

padding1 and the rest are fields reserved for future use, but are not currently in use.

Lustre Protocol Documentation

12

A.4. ost_id

Table A.5. ost_id

type field

union __u64 oi_id, oi_seq

struct lu_fid oi_fid

A.5. ptlrpc_body
The first buffer in every message format is always a ptlrpc_body structure.

Table A.6. ptlrpc_body

type field

struct lustre_handle pb_handle

__u32 pb_type

__u32 pb_version

__u32 pb_opc

__u32 pb_status

__u64 pb_last_xid

__u64 pb_last_seen

__u64 pb_last_committed

__u64 pb_transno

__u32 pb_flags

__u32 pb_op_flags

__u32 pb_conn_cnt

__u32 pb_timeout

__u32 pb_service_time

__u32 pb_limit

__u64 pb_slv

__u64 pb_pre_versions[PTLRPC_NUM_VERSIONS]

__u64 pb_padding[4]

char pb_jobid[LUSTRE_JOBID_SIZE]

The semantics of each field will generally be different between request messages and replies.

pb_handle is a struct lustre_handle which holds a cookie. In a connection request (eg.
MDS_CONNECT, from a client to a server) pb_handle is 0. In the reply to a connection request
pb_handle will be the cookie that uniquely identifies the shared state information (the "export") for
that client that is maintained on the server. The client then notes this cookie in its import. Subsequent

Lustre Protocol Documentation

13

messages between this client and this server will refer to the same shared state by using this cookie as
the lustre_handle in this field.

pb_type is one of the three message types PTL_RPC_MSG_REQUEST, PTL_RPC_MSG_ERR,
or PTL_RPC_MSG_REPL. As one might expect, "request" and "reply" are the two usual message
types, one for initiating and exchange and the other for responding to it. The "err" message type
is only for responding to a message that failed to be interpreted as an actual message. Note that
other errors, such as those that emerge from processing the actual message content, do not use the
PTL_RPC_MSG_ERR symbol.

pb_version is a field that encodes the Lustre protocol version (PTLRPC_MSG_VERSION)
in combination (or-ed) with one of the service types: LUSTRE_OBD_VERSION,
LUSTRE_MDS_VERSION, LUSTRE_OST_VERSION, LUSTRE_DLM_VERSION,
LUSTRE_LOG_VERSION, or LUSTRE_MGS_VERSION.

pb_opc gives the actual operation that is the subject of this PtlRPC. The op code for an operation is
one of the names from the list of message pairs, for example MDS_CONNECT.

pb_status will always be zero in a request message. In a reply message, a zero indicates that the
service successfully initiated the requested operation. If for some reason the operation could not be
initiated (eg. "permission denied") pb_status will encode the standard Linux kernel (POSIX) error
code (eg. EPERM). Note the difference between pb_status errors, where there is a problem in the
processing of an otherwise well-formed message, and errors that come from the message itself being
ill-formed (which results in a pb_type=RPC_MSG_ERR). Note also that a pb_status of zero returned
for an operation does not necessarily mean it has completed (cf. pb_last_committed).

pb_last_xid is not used.

pb_last_seen is not used.

pb_last_committed is always zero in a request. In a reply it is the highest transaction number that has
been committed to storage. The transaction numbers are maintained on a per-target basis and each
series of transaction numbers is a monotonically increasing sequence. This field is set in any kind of
reply message including pings and non-modifying transactions.

pb_transno always zero in a request. It is also zero for replies to operations that do not modify the file
system. For replies to operations that do modify the file system it is the server-assigned value from the
monotonically increasing sequence of 64-bit values associated with the given client.

pb_flags is one among: MSG_LAST_REPLAY, MSG_RESENT, MSG_REPLAY,
MSG_DELAY_REPLAY, MSG_VERSION_REPLAY, MSG_REQ_REPLAY_DONE, and
MSG_LOCK_REPLAY_DONE.

pb_op_flags is one among: MSG_CONNECT_RECOVERING, MSG_CONNECT_RECONNECT,
MSG_CONNECT_REPLAYABLE, MSG_CONNECT_LIBCLIENT, MSG_CONNECT_INITIAL,
MSG_CONNECT_ASYNC, MSG_CONNECT_NEXT_VER, and MSG_CONNECT_TRANSNO.

pb_conn_cnt in a request message reports the client’s era, which is part of the client and server’s
shared state. The value of the era is initialized to one when it is first connected to the metadata
service. Each subsequent connection (after an eviction) increments the era. Since the pb_conn_cnt
reflects the client’s era at the time the message was composed the server can use this value to discard
late-arriving messages requesting operations on out-of-date shared state. fixme Will the server also
send a current era or will replies just be zero?

Lustre Protocol Documentation

14

pb_timeout in a request indicates how long the requester plans to wait before timing out the operation.
That is, the corresponding reply for this message should arrive within this time-frame. The service
may extend this time-frame via an early reply, which is a reply to this message that notifies the
requester that it should extend its timeout interval by the value of pb_time (the one in the reply).
The early reply does not indicate the operation has actually been initiated. Clients maintain multiple
request queues, called "portals", and each type of operation is assigned to one of these queues. There
is a timeout value associated with each queue, and the pb_timeout update affects all the messages
associated with the given queue, not just the specific message that initiated the request. Finally, in a
reply message (one that does indicate the operation has been initiated) the pb_timeout value updates
the timeout interval for the queue.

pb_service_time is zero in a request. In a reply it indicates how long this particular operation actually
took from the time it first arrived in the request queue (at the service) to the time the server replied.
Note that the client can use this value and the local elapsed time for the operation to calculate network
latency.

pb_limit is zero in a request. In a reply it is a value sent from a lock service to a client to set the
maximum number of locks available to the client. When dynamic lock LRU’s are enabled this allows
for managing the size of the LRU.

pb_slv is zero in a request. The "server lock volume" on a DLM service is a value that characterizes
(estimates) the amount of traffic, or load, on that lock service. It is calculated as the product of the
number of locks and their age. In a reply, the pb_slv value indicates to the client the available share
of the total lock load on the server that it is allowed to consume. The client is then responsible for
reducing its number or(or age) of locks to stay within this limit.

pb_pre_versions[PTLRPC_NUM_VERSIONS] has four entries (PTLRPC_NUM_VERSIONS = 4).
They are always zero in a request message. They are also zero in replies to operations that do not
modify the file system. For an operation that does modify the file system, the reply encodes the most
recent transaction numbers for the objects modified by this operation.

pb_padding[4] is reserved for use.

pb_jobid[LUSTRE_JOBID_SIZE] gives a unique identifier associated with the process on behalf of
which this message was generated. The identifier is assigned to the user process by a job scheduler, if
any.

B. Message Formats
This table lists the names of the message formats employed in Lustre messages along with the
structures they employ. These formats are gathered into message pairs where one format in the pair is
the format for a request message and the other is the format for its anticipated reply.

Table B.1. message formats and their structures

format structures

empty ptlrpc_body

fld_query_client ptlrpc_body

fld_query_opc(__u32)

Lustre Protocol Documentation

15

format structures

lu_seq_range

fld_query_server ptlrpc_body

lu_seq_range

fld_read_client ptlrpc_body

lu_seq_range

fld_read_server ptlrpc_body

unstructured data

ldlm_cp_callback_client ptlrpc_body

ldlm_request

unstructured data

ldlm_enqueue_client ptlrpc_body

ldlm_request

ldlm_enqueue_lvb_server ptlrpc_body

ldlm_reply

unstructured data

ldlm_enqueue_server ptlrpc_body

ldlm_reply

ldlm_gl_callback_desc_client ptlrpc_body

ldlm_request

ldlm_gl_desc

ldlm_gl_callback_server ptlrpc_body

unstructured data

ldlm_intent_basic_client ptlrpc_body

ldlm_request

ldlm_intent

ldlm_intent_client ptlrpc_body

ldlm_request

ldlm_intent

mdt_rec_reint

ldlm_intent_create_client ptlrpc_body

ldlm_request

ldlm_intent

mdt_rec_reint

lustre_capa

unstructured data

Lustre Protocol Documentation

16

format structures

unstructured data

ldlm_intent_getattr_client ptlrpc_body

ldlm_request

ldlm_intent

mdt_body

lustre_capa

unstructured data

ldlm_intent_getattr_server ptlrpc_body

ldlm_reply

mdt_body

MIN_MD_SIZE

acl

lustre_capa

ldlm_intent_getxattr_client ptlrpc_body

ldlm_request

ldlm_intent

mdt_body

lustre_capa

ldlm_intent_getxattr_server ptlrpc_body

ldlm_reply

mdt_body

MIN_MD_SIZE

acl

unstructured data

unstructured data

unstructured data

ldlm_intent_layout_client ptlrpc_body

ldlm_request

ldlm_intent

layout_intent

unstructured data

ldlm_intent_open_client ptlrpc_body

ldlm_request

ldlm_intent

mdt_rec_reint

Lustre Protocol Documentation

17

format structures

lustre_capa

lustre_capa

unstructured data

unstructured data

ldlm_intent_open_server ptlrpc_body

ldlm_reply

mdt_body

MIN_MD_SIZE

acl

lustre_capa

lustre_capa

ldlm_intent_quota_client ptlrpc_body

ldlm_request

ldlm_intent

quota_body

ldlm_intent_quota_server ptlrpc_body

ldlm_reply

unstructured data

quota_body

ldlm_intent_server ptlrpc_body

ldlm_reply

mdt_body

MIN_MD_SIZE

acl

ldlm_intent_unlink_client ptlrpc_body

ldlm_request

ldlm_intent

mdt_rec_reint

lustre_capa

unstructured data

llog_log_hdr_only ptlrpc_body

llog_log_hdr

llog_origin_handle_create_client ptlrpc_body

llogd_body

unstructured data

Lustre Protocol Documentation

18

format structures

llog_origin_handle_next_block_server ptlrpc_body

llogd_body

unstructured data

llogd_body_only ptlrpc_body

llogd_body

llogd_conn_body_only ptlrpc_body

llogd_conn_body

log_cancel_client ptlrpc_body

llog_cookie

mds_getattr_name_client ptlrpc_body

mdt_body

lustre_capa

unstructured data

mds_getattr_server ptlrpc_body

mdt_body

MIN_MD_SIZE

acl

lustre_capa

lustre_capa

mds_getinfo_client ptlrpc_body

unstructured data

getinfo_vallen(__u32)

mds_getinfo_server ptlrpc_body

unstructured data

mds_getxattr_client ptlrpc_body

mdt_body

lustre_capa

unstructured data

unstructured data

mds_getxattr_server ptlrpc_body

mdt_body

unstructured data

mds_last_unlink_server ptlrpc_body

mdt_body

MIN_MD_SIZE

Lustre Protocol Documentation

19

format structures

llog_cookie

lustre_capa

lustre_capa

mds_reint_client ptlrpc_body

mdt_rec_reint

mds_reint_create_client ptlrpc_body

mdt_rec_reint

lustre_capa

unstructured data

mds_reint_create_rmt_acl_client ptlrpc_body

mdt_rec_reint

lustre_capa

unstructured data

unstructured data

ldlm_request

mds_reint_create_slave_client ptlrpc_body

mdt_rec_reint

lustre_capa

unstructured data

unstructured data

ldlm_request

mds_reint_create_sym_client ptlrpc_body

mdt_rec_reint

lustre_capa

unstructured data

unstructured data

ldlm_request

mds_reint_link_client ptlrpc_body

RMF_REC_REIN

lustre_capa

lustre_capa

unstructured data

ldlm_request

mds_reint_open_client ptlrpc_body

mdt_rec_reint

Lustre Protocol Documentation

20

format structures

lustre_capa

lustre_capa

unstructured data

unstructured data

mds_reint_open_server ptlrpc_body

mdt_body

MIN_MD_SIZE

acl

lustre_capa

lustre_capa

mds_reint_rename_client ptlrpc_body

mdt_rec_reint

lustre_capa

lustre_capa

unstructured data

unstructured data

ldlm_request

mds_reint_setattr_client ptlrpc_body

mdt_rec_reint

lustre_capa

mdt_ioepoch

unstructured data

llog_cookie

ldlm_request

mds_reint_setxattr_client ptlrpc_body

mdt_rec_reint

lustre_capa

unstructured data

unstructured data

ldlm_request

mds_reint_unlink_client ptlrpc_body

mdt_rec_reint

lustre_capa

unstructured data

ldlm_request

Lustre Protocol Documentation

21

format structures

mds_setattr_server ptlrpc_body

mdt_body

MIN_MD_SIZE

acl

lustre_capa

lustre_capa

mds_update_client ptlrpc_body

unstructured data

mds_update_server ptlrpc_body

unstructured data

mdt_body_capa ptlrpc_body

mdt_body

lustre_capa

mdt_body_only ptlrpc_body

mdt_body

mdt_close_client ptlrpc_body

mdt_ioepoch

mdt_rec_reint

lustre_capa

mdt_hsm_action_server ptlrpc_body

mdt_body

mdt_hsm_ct_register ptlrpc_body

mdt_body

hsm_archive(__u32)

mdt_hsm_ct_unregister ptlrpc_body

mdt_body

mdt_hsm_progress ptlrpc_body

mdt_body

hsm_progress_kernel

mdt_hsm_request ptlrpc_body

mdt_body

hsm_request

hsm_user_item

unstructured data

mdt_hsm_state_get_server ptlrpc_body

Lustre Protocol Documentation

22

format structures

mdt_body

hsm_user_state

mdt_hsm_state_set ptlrpc_body

mdt_body

lustre_capa

hsm_state_set

mdt_release_close_client ptlrpc_body

mdt_ioepoch

mdt_rec_reint

lustre_capa

close_data

mdt_swap_layouts ptlrpc_body

mdt_body

mdc_swap_layouts

lustre_capa

lustre_capa

ldlm_request

mgs_config_read_client ptlrpc_body

mgs_config_body

mgs_config_read_server ptlrpc_body

mgs_config_res

mgs_set_info ptlrpc_body

mgs_send_param

mgs_target_info_only ptlrpc_body

mgs_target_info

obd_connect_client ptlrpc_body

obd_uuid

obd_uuid

lustre_handle

obd_connect_data

obd_connect_server ptlrpc_body

obd_connect_data

obd_idx_read_client ptlrpc_body

idx_info

obd_idx_read_server ptlrpc_body

Lustre Protocol Documentation

23

format structures

idx_info

obd_lfsck_reply ptlrpc_body

lfsck_reply

obd_lfsck_request ptlrpc_body

lfsck_request

obd_set_info_client ptlrpc_body

unstructured data

unstructured data

obd_statfs_server ptlrpc_body

obd_statfs

ost_body_capa ptlrpc_body

ost_body

lustre_capa

ost_body_only ptlrpc_body

ost_body

ost_brw_client ptlrpc_body

ost_body

obd_ioobj

niobuf_remote

lustre_capa

ost_brw_read_server ptlrpc_body

ost_body

ost_brw_write_server ptlrpc_body

ost_body

niobuf_remote (__u32)

ost_destroy_client ptlrpc_body

ost_body

ldlm_request

lustre_capa

ost_get_fiemap_client ptlrpc_body

ll_fiemap_info_key

unstructured data

ost_get_fiemap_server ptlrpc_body

unstructured data

ost_get_info_generic_client ptlrpc_body

Lustre Protocol Documentation

24

format structures

unstructured data

ost_get_info_generic_server ptlrpc_body

unstructured data

ost_get_last_fid_client ptlrpc_body

unstructured data

lu_fid

ost_get_last_fid_server ptlrpc_body

lu_fid

ost_get_last_id_server ptlrpc_body

obd_id (__u64)

ost_grant_shrink_client ptlrpc_body

unstructured data

ost_body

quota_body_only ptlrpc_body

quota_body

quotactl_only ptlrpc_body

obd_quotactl

seq_query_client ptlrpc_body

seq_query_opc (__u32)

lu_seq_range

seq_query_server ptlrpc_body

lu_seq_range

C. Message Pairs
Each message pair has a name and two message formats. The message pair’s name is a convenience
to facilitate discussion. One may think of the name as an operation Lustre will carry out. The two
message formats in a message pair are the request message and a reply message appropriate to that
request. Each of these messages is given a name in order to identify its specific format. Those names
are reused so that there are 95 named messages formats to be used in the 94 message pairs.

Table C.1. Operations and their message pairs

Operation Request Format Reply Format

CONNECT obd_connect_client obd_connect_server

FLD_QUERY fld_query_client fld_query_server

FLD_READ fld_read_client fld_read_server

LDLM_BL_CALLBACK ldlm_enqueue_client empty

Lustre Protocol Documentation

25

Operation Request Format Reply Format

LDLM_CALLBACK ldlm_enqueue_client empty

LDLM_CANCEL ldlm_enqueue_client empty

LDLM_CONVERT ldlm_enqueue_client ldlm_enqueue_server

LDLM_CP_CALLBACK ldlm_cp_callback_client empty

LDLM_ENQUEUE ldlm_enqueue_client ldlm_enqueue_lvb_server

LDLM_ENQUEUE_LVB ldlm_enqueue_client ldlm_enqueue_lvb_server

LDLM_GL_CALLBACK ldlm_enqueue_client ldlm_gl_callback_server

LDLM_GL_DESC_CALLBACKldlm_gl_callback_desc_client ldlm_gl_callback_server

LDLM_INTENT ldlm_intent_client ldlm_intent_server

LDLM_INTENT_BASIC ldlm_intent_basic_client ldlm_enqueue_lvb_server

LDLM_INTENT_CREATE ldlm_intent_create_client ldlm_intent_getattr_server

LDLM_INTENT_GETATTR ldlm_intent_getattr_client ldlm_intent_getattr_server

LDLM_INTENT_GETXATTR ldlm_intent_getxattr_client ldlm_intent_getxattr_server

LDLM_INTENT_LAYOUT ldlm_intent_layout_client ldlm_enqueue_lvb_server

LDLM_INTENT_OPEN ldlm_intent_open_client ldlm_intent_open_server

LDLM_INTENT_QUOTA ldlm_intent_quota_client ldlm_intent_quota_server

LDLM_INTENT_UNLINK ldlm_intent_unlink_client ldlm_intent_server

LFSCK_NOTIFY obd_lfsck_request empty

LFSCK_QUERY obd_lfsck_request obd_lfsck_reply

LLOG_ORIGIN_CONNECT llogd_conn_body_only empty

LLOG_ORIGIN_HANDLE_CREATEllog_origin_handle_create_client llogd_body_only

LLOG_ORIGIN_HANDLE_DESTROYllogd_body_only llogd_body_only

LLOG_ORIGIN_HANDLE_NEXT_BLOCKllogd_body_only llog_origin_handle_next_block_server

LLOG_ORIGIN_HANDLE_PREV_BLOCKllogd_body_only llog_origin_handle_next_block_server

LLOG_ORIGIN_HANDLE_READ_HEADERllogd_body_only llog_log_hdr_only

LOG_CANCEL log_cancel_client empty

MDS_CLOSE mdt_close_client mds_last_unlink_server

MDS_CONNECT obd_connect_client obd_connect_server

MDS_DISCONNECT empty empty

MDS_DONE_WRITING mdt_close_client mdt_body_only

MDS_GETATTR mdt_body_capa mds_getattr_server

MDS_GETATTR_NAME mds_getattr_name_client mds_getattr_server

MDS_GETSTATUS mdt_body_only mdt_body_capa

MDS_GETXATTR mds_getxattr_client mds_getxattr_server

MDS_GET_INFO mds_getinfo_client mds_getinfo_server

Lustre Protocol Documentation

26

Operation Request Format Reply Format

MDS_HSM_ACTION mdt_body_capa mdt_hsm_action_server

MDS_HSM_CT_REGISTER mdt_hsm_ct_register empty

MDS_HSM_CT_UNREGISTER mdt_hsm_ct_unregister empty

MDS_HSM_PROGRESS mdt_hsm_progress empty

MDS_HSM_REQUEST mdt_hsm_request empty

MDS_HSM_STATE_GET mdt_body_capa mdt_hsm_state_get_server

MDS_HSM_STATE_SET mdt_hsm_state_set empty

MDS_QUOTACHECK quotactl_only empty

MDS_QUOTACTL quotactl_only quotactl_only

MDS_READPAGE mdt_body_capa mdt_body_only

MDS_REINT mds_reint_client mdt_body_only

MDS_REINT_CREATE mds_reint_create_client mdt_body_capa

MDS_REINT_CREATE_RMT_ACLmds_reint_create_rmt_acl_client mdt_body_capa

MDS_REINT_CREATE_SLAVEmds_reint_create_slave_client mdt_body_capa

MDS_REINT_CREATE_SYM mds_reint_create_sym_client mdt_body_capa

MDS_REINT_LINK mds_reint_link_client mdt_body_only

MDS_REINT_OPEN mds_reint_open_client mds_reint_open_server

MDS_REINT_RENAME mds_reint_rename_client mds_last_unlink_server

MDS_REINT_SETATTR mds_reint_setattr_client mds_setattr_server

MDS_REINT_SETXATTR mds_reint_setxattr_client mdt_body_only

MDS_REINT_UNLINK mds_reint_unlink_client mds_last_unlink_server

MDS_RELEASE_CLOSE mdt_release_close_client mds_last_unlink_server

MDS_STATFS empty obd_statfs_server

MDS_SWAP_LAYOUTS mdt_swap_layouts empty

MDS_SYNC mdt_body_capa mdt_body_only

MGS_CONFIG_READ mgs_config_read_client mgs_config_read_server

MGS_SET_INFO mgs_set_info mgs_set_info

MGS_TARGET_REG mgs_target_info_only mgs_target_info_only

OBD_IDX_READ obd_idx_read_client obd_idx_read_server

OBD_PING empty empty

OBD_SET_INFO obd_set_info_client empty

OST_BRW_READ ost_brw_client ost_brw_read_server

OST_BRW_WRITE ost_brw_client ost_brw_write_server

OST_CONNECT obd_connect_client obd_connect_server

OST_CREATE ost_body_only ost_body_only

Lustre Protocol Documentation

27

Operation Request Format Reply Format

OST_DESTROY ost_destroy_client ost_body_only

OST_DISCONNECT empty empty

OST_GETATTR ost_body_capa ost_body_only

OST_GET_INFO ost_get_info_generic_client ost_get_info_generic_server

OST_GET_INFO_FIEMAP ost_get_fiemap_client ost_get_fiemap_server

OST_GET_INFO_LAST_FID ost_get_last_fid_client ost_get_last_fid_server

OST_GET_INFO_LAST_ID ost_get_info_generic_client ost_get_last_id_server

OST_PUNCH ost_body_capa ost_body_only

OST_QUOTACHECK quotactl_only empty

OST_QUOTACTL quotactl_only quotactl_only

OST_SETATTR ost_body_capa ost_body_only

OST_SET_GRANT_INFO ost_grant_shrink_client ost_body_only

OST_SET_INFO_LAST_FID obd_set_info_client empty

OST_STATFS empty obd_statfs_server

OST_SYNC ost_body_capa ost_body_only

OUT_UPDATE mds_update_client mds_update_server

QC_CALLBACK quotactl_only empty

QUOTA_DQACQ quota_body_only quota_body_only

SEC_CTX empty empty

SEQ_QUERY seq_query_client seq_query_server

D. Concepts
Content to be provided

E. License
Copyright © Intel 2015

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
(CC BY-SA 4.0). See https://creativecommons.org/licenses/by-sa/4.0/ for more detail.

Bibliography
Here is a selected list of references, including those cited in the foregoing text.

[lustre] Lustre. http://lustre.opensfs.org

https://creativecommons.org/licenses/by-sa/4.0/
http://lustre.opensfs.org

Lustre Protocol Documentation

28

[POSIX] POSIX. http://pubs.opengroup.org/onlinepubs/9699919799/

[PORTALS] The Portals 3.0 Message Passing Interface Revision 1.1.. Ron Brightwell, Trammel
Hudson, Rolf Riesen, and Arthur B. Maccabe. Technical report, December 1999.

[VAX_DLM] The VAX/VMS Distributed Lock Manager. W Snaman and D Thiel. Digital Technical
Journal, September 1987.

[Barton_Dilger] Lustre. Eric Barton and Andreas Dilger. A book on parallel file systems. Chapter 8.
High Performance Parallel I/O, Prabhat and Quincey Koziol, Chapman and Hall/CRC Press,
2014, ISBN: 978-1466582347.

http://pubs.opengroup.org/onlinepubs/9699919799/

	Lustre Protocol Documentation
	Table of Contents
	1. Introduction
	2. Lustre Messages
	2.1. Lustre Operations
	2.2. Message Formats
	2.3. Structures
	2.4. Endianness
	2.5. The Message Header lustre_msg_v2

	3. Shared State Between Clients and Servers
	4. Namespace Operations
	4.1. Mount
	Messages Between the Client and the MGS
	Messages Between the Client and the MDSs
	Messages Between the Client and the OSSs

	5. Data Movement Operations
	6. State Management
	6.1. Connect

	Glossary
	A. Structures
	A.1. lu_fid
	A.2. lustre_handle
	A.3. obd_connect_data
	A.4. ost_id
	A.5. ptlrpc_body

	B. Message Formats
	C. Message Pairs
	D. Concepts
	E. License
	Bibliography

