
Test Plan

MDT reply reconstruction improvement

version: 2
date: 2015/07/17
author: Grégoire Pichon - gregoire.pichon@bull.net

Introduction
Currently, the MDT cannot handle more than one single filesystem-modifying RPC at a time, because there is only
one slot per client in the MDT last_rcvd file. This slot is used to save the state of the last transaction (transaction
number, xid, RPC result, operation data) so the reply can be reconstructed in case of RPC resend if the reply was lost.
As a consequence, the filesystem-modifying MDC requests are serialized, leading to poor metadata performance
from a single Lustre client.

The goal of this project is to support multiple slots per client for reply reconstruction of filesystem-modifying MDT
requests, and to improve metadata operations performance of a single client.

This work is tracked with Lustre JIRA LU-5319.

Tests

Single client metadata performance

The single client metadata performance improvement will be verified with the mdtest benchmark. The benchmark
will perform creation and unlink operations of a fixed total number of files, using a "directory per process" model.

Auster test suite

The acceptance-small test suite will be run to verify no functional regression.
The Auster test suite will be enhanced with several tests cases.

sanity

The import structure of a MDC indicates support of multiple filesystem-modifying RPCs in parallel within
connect_flags field, and max_mod_rpcs connect data.

test 245 check mdc connection flag/data: multiple modify RPCs

A MDC is able to send multiple modify RPCs in parallel

test 182 Test parallel modify metadata operations from mdc

The lr_reader tool displays per-client area of LAST_RCVD file and the reply data of the REPLY_DATA file.

test 252 Check lr_reader tool

conf-sanity

The maximum number of modify RPCs in flight can be dynamically updated through the client device procfs file
max_mod_rpcs_in_flight, but it cannot exceed the maximum number of modify RPCs per client returned by the
server during connection establishment. Additionally, it cannot exceed or equal the maximum number of RPCs in
flight.
The max_mod_rpcs_in_flight value controls the maximum number of modify RPCs in flight of a client device
connected to a MDT.
One additional close request can be allowed above the maximum number of modify RPCs in flight, if no other close
request is in flight.
The mdt kernel module has a parameter max_mod_rpcs_per_client that specifies the maximum number of RPCs in
flight allowed per client.

https://jira.hpdd.intel.com/browse/LU-5319

test 86a check max_mod_rpcs_in_flight is enforced
test 86b check max_mod_rpcs_in_flight is enforced after update
test 86c check max_mod_rpcs_in_flight update limits
test 86d check one close RPC is allowed above max_mod_rpcs_in_flight

replay-single

When modify metadata RPCs are sent by a client, the MDT handles the requests, saves the reply data in-memory,
and saves the reply data on-disk in the same transaction than the corresponding MDT request disk modification.

If the requests of modify metadata RPCs are lost, the client resends the RPC requests and the MDT handles the
requests normally.

test 102a check resend (request lost) with multiple modify RPCs in flight

If the replies of modify metadata RPCs are lost, the client resends the RPC requests and the replies are reconstructed
from the in-memory reply data.

test 102b check resend (reply lost) with multiple modify RPCs in flight

If the MDT crashes before the disk transactions have been committed, the MDT handles normally the RPC requests
replayed by the client.

test 102c check replay w/o reconstruction with multiple mod RPCs in flight

If the MDT crashes after the disk transactions have been committed, the MDT restores the in-memory reply data
from the disk when it recovers, and is able to reconstruct the replies when the client RPC requests are replayed.

test 102d check replay & reconstruction with multiple mod RPCs in flight

Upgrade, downgrade and inter-operability

Upgrade and downgrade of the Lustre client will be verified.
Upgrade and downgrade of the Lustre server will be verified.
Interoperability between a client that supports or does not support and a server that supports or does not support
will be verified.

Results

Test Bed

Hardware

 Lustre server node
8 CPUs, 2 sockets Intel Xeon X5560 @ 2.80GHz, 36GiB memory, 1 InfiniBand FDR adapter

 Lustre client node
16 CPUs, 2 sockets Intel Xeon E5-2690 @ 2.90GHz, 64GiB memory, 1 InfiniBand FDR adapter

Software

 Kernel 2.6.32-431.29.2

 OFED 3.12

 Lustre 2.7.56
+ patch #14861 “tests: testcases for multiple modify RPCs feature”
+ patch #14862 “utils: update lr_reader to display additional data”

 Lustre 2.7.0 for interoperability and upgrade/downgrade tests

File System

 MGT /var/loop/mgt ldiskfs 200000 Bytes

 MDT0 /dev/ram0 ldiskfs 4GiB

 MDT1 /dev/ram1 ldiskfs 4GiB

 OST0 /dev/ram2 ldiskfs 4GiB

 OST1 /dev/ram3 ldiskfs 4GiB

Test suite Test case Status

sanity test 182: Test parallel modify metadata operations PASS
 test 245: check mdc connection flag/data: multiple modify RPCs PASS
 test 252: check lr_reader tool PASS
replay-single test 53a: |X| close request while two MDC requests in flight PASS
 test 53b: |X| open request while two MDC requests in flight PASS
 test 53c: |X| open request and close request while two MDC requests in flight PASS
 test 53d: close reply while two MDC requests in flight PASS
 test 53e: |X| open reply while two MDC requests in flight PASS
 test 53f: |X| open reply and close reply while two MDC requests in flight PASS
 test 53g: |X| drop open reply and close request while close and open are both in flight PASS
 test 53h: open request and close reply while two MDC requests in flight PASS
 test 102a: check resend (request lost) with multiple modify RPCs in flight PASS
 test 102b: check resend (reply lost) with multiple modify RPCs in flight PASS
 test 102c: check replay w/o reconstruction with multiple mod RPCs in flight PASS
 test 102d: check replay & reconstruction with multiple mod RPCs in flight PASS
conf-sanity test 86a: check max_mod_rpcs_in_flight is enforced PASS
 test 86b: check max_mod_rpcs_in_flight is enforced after update PASS
 test 86c: check max_mod_rpcs_in_flight update limits PASS
 test 86d: check one close RPC is allowed above max_mod_rpcs_in_flight PASS

Single Client Metadata Performance

The charts present the results of the mdtest benchmark performing creation and unlink operations of one million
files using a “directory per process” model.
Note: the following format parameter has been added for OSTs to ensure enough objects can be created:
OST_FS_MKFS_OPTS="-N 4000000".

The Lustre 2.7.56 measurement has been performed with max_mod_rpcs_in_flight=32.
We observe a performance improvement between Lustre 2.7.56 and Lustre 2.7.0 for the single client metadata
modify operations. The creation rate increased by more than 200% and the removal rate increased by more than
100%.
The removal rate increase is lower than expected. This needs to be analyzed to understand if this comes from the
feature itself, or from another feature landed in the meantime.

0

5000

10000

15000

20000

0 4 8 12 16

IO
p

s

tasks

mdtest - directory per task
lustre 2.7.56 vs lustre 2.7.0 - single client

Creation 2.7.56

Removal 2.7.56

Creation 2.7.0

Removal 2.7.0

The single client performance of file creations and removals increases with the number of modify RPCs allowed in
parallel (max_mod_rpcs_in_flight mdc parameter).

Interoperability

The following interoperability configurations have been tested:

 Client node with Lustre 2.7.0 and server node with Lustre 2.7.56

 Client node with Lustre 2.7.56 and server node with Lustre 2.7.0
In each interoperability configurations, several filesystem operations were performed, including metadata
operations (creation, stat, unlink).

Additionally, the Maloo tests succeeded while the client side patch #14374 and the server side patch #14860 was
independently submitted into Gerrit.

Upgrade / Downgrade

The upgrade and downgrade of Lustre version has been tested with the following sequence.

Client and server nodes are installed with Lustre 2.7.0

1. Format the filesystem
2. Mount the targets and the client
3. Perform filesystem operations (sanity test 182, IO from/to files, lfs df, …)
4. Unmount the targets
5. Upgrade the server node to Lustre 2.7.56
6. Mount the targets
7. Perform filesystem operations
8. Unmount the client
9. Upgrade the client node to Lustre 2.7.56
10. Mount the client
11. Perform filesystem operations
12. Unmount the client
13. Downgrade the client node to Lustre 2.7.0
14. Mount the client
15. Perform filesystem operations
16. Unmount the targets

a. for each MDT target sequentially: mount with abort_recovery option and unmount
this clears the OBD_INCOMPAT_MULTI_RPCS incompatibility flag

17. Downgrade the server node to Lustre 2.7.0
18. Mount the targets
19. Perform filesystem operations

0

5000

10000

15000

20000

0 4 8 12 16 20 24 28 32

IO
p

s

max_mod_rpcs_in_flight

mdtest - directory per task
lustre 2.7.56 - single client - 16 tasks

Creation

Removal

20. Unmount and cleanup the filesystem

A similar sequence has been tested with first upgrade of the client node, then upgrade of the server node, then
downgrade of the server node and finally downgrade of the client node.

Downgrading the server node without doing step 16.a has been tested. In that case, an expected error occurred
while mounting an MDT target (mount.lustre: mount /dev/ram0 at /mds1 failed: Invalid argument).

