Configuring Security Type for Lustre

Setting the type of encryption used can be specified on the NID and direction (to/from) for traffic.
To default all interfaces to a specific settings use the “default” word.

Usage:
lctl conf param fsname.srpc.flavor.default=flavor
lctl conf param fsname.srpc.flavor.NID=flavor
lctl conf param fsname.srpc.flavor.NID.SP2SP=flavor

fsname - The file system name

flavor - The security flavor (see: sptlrpc name2flavor base () functionin
lustre/ptlrpc/sec.c)

e null - Null mechanism (no integrity or privacy)

e plain - Plaintext with a hash on RPC

e GSS Keyring Mech Types
gssnull - Null mechanism that uses the GSSAPI module
krb5n - Kerberos 5 with authentication only
krb5a - Kerberos 5 with authentication only
krb5i - Kerberos 5 with authentication and integrity checks for all bulk data
krb5p - Kerberos 5 with authentication, integrity, and privacy.

m This encrypts bulk data using one of the ciphers available
ski - Shared key with integrity
skpi - Shared key with integrity and privacy

o O O O

NID - Lustre Networking Identifier
Ind - Where Ind is the lustre network driver (tcp, 02ib, or gnid)
<Ind:Ind>num
IndN - Where N is the network number (0-65536)

SpP - Lustre Secure PTLRPC service
cli - Lustre client

mdt - Lustre MDT

ost - Lustre OST

mgc - Lustre MGC

mgs - Lustre MGS

any - Any Lustre service

Examples:
lctl conf param FSNAME.srpc.flavor.default=gssnull
lctl conf param FSNAME.srpc.flavor.tcpl=krb
lctl conf param FSNAME.srpc.flavor.o2ib.cliZost=skpi

Setting up Lustre Clients for GSS Keyring Types

The Lustre GSS keyring types of flavors utilize the linux kernel keyring infrastructure to maintain
keys as well as perform the upcall from kernel space to user space for key
negotiation/establishment. The GSS keyring establishes a key type (see “request-key (8)”)
named “lgssc” when the Lustre ptirpc_gss kernel module is loaded. When a security context
needs to be established for Lustre it will create a key and use the request-key binary in an
upcall to establish the key. This key will look for the configuration file in /etc/request-key.d with
the name keytype.conf, for Lustre this is Igssc.conf. The /etc/request-key.d/Igssc.conf for Lustre
should look like the following:

o\

oo
—
o\
av)
o
n

create lgssc * * /usr/sbin/lgss_keyring %o $k %t %d %$c %u %g
The request-key binary will call /usr/sbin/lgss_keyring with the arguments following it with their
substituted values (see “request-key.conf (5)”).

Note: As part of the process to verify a host the Igss_keyring program requires that the
NID’s IPv4 address portion resolve to a hosthame using a reverse lookup. This is true for
ko2ibind and ksockind LNDs.

Setting up Lustre Servers for GSS Keyring Types

Lustre servers do not use the linux kernel keyring infrastructure as clients do. Instead they run
a daemon that uses a pipefs with the kernel to trigger events based on read/write to a file
descriptor. The server side binary is the /usr/sbin/1lsvcgssd. This can be ran by hand in the
foreground for extra debugging information or as a daemon. Future versions of Lustre will
support an init script to run this as a service. Below is the usage for the 1svcgssd script. As
part of the shared key work this daemon has been extended to require various security flavors
(gssnull, krb, sk) to be enabled explicitly so only required functionality is enabled.

usage: /usr/sbin/lsvcgssd [-nfvrmog]

-f - Run in foreground

-n - Don't establish kerberos credentials
-v - Verbosity

-m - Service MDS

-0 - Service 0SS

-g - Service MGS

-k - Enable kerberos support

-s - Enable shared key support

-z - Enable gssnull support

Debugging GSS Keyring
Lustre client and server support several debug levels which can be seen below.
Debug levels:

0 - Error
1-Warn
2 - Info

3 - Debug
4 - Trace

To set the debug level on the client use the Lustre parameter:
sptlrpc.gss.lgss keyring.debug level. For example to set the debug level to debug:

lctl set param sptlrpc.gss.lgss keyring.debug level=3

On the server side verbosity is increased by adding additional verbose flags to the command
line arguments for the daemon. The following would run the 1svcgssd daemon in the
foreground with debug verbosity supporting gssnull and shared key security flavors.

/usr/sbin/lsvcgssd -f -vvv -z -s

Since 1gss_keyring is called as part of the request-key upcall there is no standard output for
the process so logging will be done to the syslog. The server side logging with 1svcgssd is
done to standard output in the foreground mount and to syslog in daemon mode.

GSS Shared Keys

Usage

Shared key generation is done using the Igss_sk utility that comes with lustre when built with the
--enable-gss option. The 1gss sk utility can be used to read the contents of a keyfile, load the
keyfile into the kernel keyring or generate (write) a key file. See the 1gss sk usage below:

Usage lgss sk [OPTIONS] [-r <file> | -1 <file> | -w <file>]
-r|--read <file>Show file's key attributes

-w|--write <file>Generate key file

-1|--load <file>Load key from file into user's session keyring

Load Options:
-t|-—-type <type>Key type (server or client)

Write Options:

-c|--crypt <num> Cipher for encryption (Default: AES Counter mode)
-h|--hmac <num> Hash alg for HMAC (Default: SHA256)
-e|--expire <num> Seconds before key expiration (Default:

2147483647 seconds)

-f|--fsname <name>File system name for key

-n|--name <name>Nodemap name for key (Default: "")
-s|—--session<len> Session key length in bits (Default: 1024)
-k|--shared <len> Shared key length in bits (Default: 256)

-d|--data <file>Shared key data source (Default: /dev/random)

Generating Keys
To first use the shared key you will need to generate a key for clients. Keys can be generated
by specifying the options for the key on the command line follow by the “~w” option and the
filename to write to. By default the 1gss_sk utility will not overwrite files so the name must be
unique. You will want need to set the file system name for all keys generated but all other
parameters are optional. By default the nodemap is blank which is the default configuration for
Lustre when nodemap is not in use. You can provide the data file for the key or by default the
utility will read from /dev/random. Since /dev/random can block if there is not sufficient
entropy available this command can take a while to run.
Supported crypt algorithms are:

0 - AES Counter mode
Supported HMAC algorithms are:

0 - MD5

1 - SHA1

2 - SHA256

3 - SHA512
For example to create a key for file system tank for a client in the nodemap biology you would
run:

[root@server ~]# lgss_sk -f tank -n biology -w tank.biology.key
Reading Keys
To read the keys generated by the Igss_sk utility you use the “-r’ flag. The usage is
straightforward and will dump up the relevant contents of the key. Contents of the key will be

dumped as hex and ASCII to standard output.

Note the key files by the GSS shared keys are a set size but unused bytes in the
shared key are not output.

Reading the above key looks like:

[root@server ~]# 1lgss_sk -r tank.biology.key

Version: 1

HMAC alg: 0

Crypt alg: 0

Expire: 2147483647 seconds
Shared keylen: 256 bits

Session keylen: 1024 bits

File system: tank

Nodemap name: biology

Shared key:

0000: 9dc3 15dc 227a 68bl dc78 0628 dbf4 b286"zh..x.(....

0010: 01l4a 2262 921c 00b4 8032 c3c6 1d7b blld .J"b..... 2...0..

Loading Keys

Loading shared keys can be done with the Igss_sk utility or at mount time by adding an
“--skpath” parameter to mount (mount.lustre). Using the Igss_sk utility loads keys into the kernel
keyring and takes one mandatory parameter “-t” which specifies the type of key as server or
client. The purpose of the type is because clients use a different name for the key description to
find keys when needed then servers do. The format is lustre:fsname for clients and
lustre:fsname:nodemap for servers. Fsname will be the file system name and is derived from
the target name that Lustre is attempting to establish the security context for. Nodemap is the
nodemap name that the client’'s NID belongs to. When nodemap is unused this will have a
blank value, otherwise this will be populated. All keys for Lustre use the “user” type for keys
and are attached to the user’s keyring. This is not configurable today. Below is an example
showing how to list the user’s keyring, load the key using the Igss_sk utility, show the key load,
read the key and clear the key from the kernel keyring.

[root@mds ~]# keyctl show
Session Keyring

-3 —--alswrv 0 0 keyring: _ses
150619626 --alswrv 0 -1 _ keyring: uid.O
[root@mds ~]# lgss_sk -t server -1 tank.biology.key
[root@mds ~]# keyctl show
Session Keyring

-3 --alswrv 0 0 keyring: ses
150619626 —--alswrv 0 -1 _ keyring: uid.O
385054140 --alswrv 0 0 _ user: lustre:tank:biology

[root@mds ~]# keyctl read 385054140
230 bytes of data in key:

01000000 00000000 ffffff7f 00010000 00040000 74616e6b 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 0062696f 6Cc6f6779 00000000
00000000 00009dc3 15dc227a 68bldc78 0628dbf4 b286014a 2262921c 00b48032
c3c61ld7b 1140000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 0000

[root@mds ~]# keyctl clear @u

[root@mds ~]# keyctl show
Session Keyring

-3 --alswrv 0 0 keyring: ses
150619626 —--alswrv 0 -1 _ keyring: uid.O0

Keys loaded using the --skpath option to the mount command support loading a whole directory
of keys for servers to conveniently load multiple keys since a it's possible several nodemaps are

in use for the same file system. If the skpath fails to load any key during the mount command it
will return a failure to the mount command. However, keys that have already been loaded will
remain in the kernel keyring.

Note: When loading keys that already exist both the 1gss_sk and mount
command will ignore any files that have a key that matches the description
matching it in the kernel. However, the contents of the key are not actually
retrieved and verified so you must clear the keyring yourself if you update a key
for a specific description.

