
	 1	

Lustre	Feature	Test	Plan	for	

Multi-Rail	
Revision:	v1	

Date:	04/25/2017	

	

Table	of	Contents	
Revision	History	.........................................................................................................................................	2	
	
Use	Case	Scenario...................................................................................................................................3	
Feature	Overview...................................................................................................................................4	
 Installation..................................................................................................................................4	

	 Configuration.............................................................................................................................4	

Tests..............................................................................................................................................................5	
	 Functional	Testing...................................................................................................................5	
	 Regression	Testing................................................................................................................12	
	 Inter-operation	Testing......................................................................................................12	
	 Failure	and	Recovery	Testing...........................................................................................12	
	 Upgrade/Downgrade	Testing..........................................................................................12	
	 MR	Router	Testing................................................................................................................13	
	 Performance	Testing............................................................................................................13	
Lnetctl	Commands	added	or	changed.........................................................................................14	
	 Adding/Removing	Network	Interface..........................................................................14	
	 Adding/Removing	Peers...................................................................................................	15	
	 Adding/Removing	Selection	Policy...............................................................................16	

	



	 2	

Revision	History	
The	following	is	a	chronological	history	of	changes	made	to	this	document.	
	
Revision Date Reason for change Author 
v.1 04/25/2017 Initial Version Saurabh	Tandan 
    
    
    

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	 3	

	
	
Introduction	
Today	LNet	supports	one	network	interface	device	(NID)	per	network	per	node.	This	restricts	the	
IO	bandwidth	available	to	a	node	and	is	a	networking	bottleneck	for	big	Lustre	client	nodes	with	
large	CPU	count.	In	particular,	there	are	Lustre	installations	where	a	few	big	clients	are	much	
larger	than	the	other	client	nodes	or	the	MDS	or	OSS	nodes.	Typically	these	systems	will	use	
Infiniband	for	the	LNet	network.		

The	Multi-Rail	Solution	is	an	LNet	level	solution.	The	LNet	level	implementation	adds	the	benefit	
of	being	able	to	utilize	different	network	interface	types,	as	opposed	to	an	Luster	Network	
Driver	(LND)	level	solution,	which	would	only	handle	bonding	LND	specific	devices.		

The	goal	of	Multi-Rail	solution	is	to	simplify	configuration	while	providing	a	valuable	feature	set	
for	increasing	performance	and	resiliency.		

This	work	is	tracked	with	Lustre	JIRA	LU-7734	

	
Use	Case	Scenario	
The	following	use	cases	are	how	we	envision	users	using	Multi-Rail	and/or	necessary	
configurations	that	should	be	tested.	The	description	of	these	scenarios	will	use	uprev	as	a	
synonym	for	a	node	with	a	multi-rail	capable	Lustre	version	installed.	A	downrev	is	a	node	with	
an	older	version	of	Lustre	install,	which	does	not	support	the	multi-rail	capability.	A	multi-rail	
node	has	the	additional	interfaces	needed	to	use	the	multi-rail	feature.			

Static	configurations	to	be	tested	include	the	following,	which	seem	most	likely	to	be	
encountered	in	the	field:		

1. Uprev	multi-rail	client	with	downrev	servers	(MGS/MDS/OSS).			
2. Uprev	multi-rail	servers	with	downrev	clients.			
3. Uprev	multi-rail	clients	and	servers.			
4. Uprev	multi-rail	clients	and	servers,	with	uprev	routers.			
5. Uprev	multi-rail	clients	and	servers,	with	downrev	routers.			
6. Uprev	multi-rail	clients	with	downrev	servers	and	downrev	routers.			

Configuration	changes	that	we	expect	to	encounter	and	which	need	to	be	tested:		

1. Upgrading	a	multi-rail	client	from	downrev	to	uprev,	with	uprev	servers.			
2. Downgrading	a	multi-rail	client	from	uprev	to	downrev,	with	uprev	servers.			
3. Upgrading	a	router	from	downrev	to	uprev			
4. Downgrading	a	router	from	uprev	to	downrev		

	

	



	 4	

	

Implicit	in	the	scenarios	above	is	that	the	full	configuration	(Net	definition,	NI	definition,	Peer	NI	
definition)	is	done	once	at	startup.	In	addition	to	this,	the	following	scenarios	apply	to	a	cluster	
that	is	already	up	and	running:		

1. Add	a	Net,	including	NIs	and	Peer	NIs.			
2. Deleting	a	Net,	NIs	and	Peer	NIs			
3. Adding	routes			
4. Deleting	routes			

Feature	Overview	
Installation:	
No	Special	requirement	for	installation.	Multi-Rail	is	already	a	feature	targeted	in	Community	
2.10	

Configuration:	
Every	node	using	multi-rail	networking	needs	to	be	properly	configured.	Multi-rail	uses	
lnetctl	and	Dynamic	LNet	Configuration	(DLC)	for	configuration.	For	more	information	on	
lnetctl	please	refer	to	lnetctl	man	page.	Configuring	multi-rail	for	a	given	node	involves	
two	tasks:	

Configuring	multiple	network	interfaces	
The	lnetctl	command	is	normally	used	to	configure	LNet	interfaces.		Following	are	lnetctl	
command	parameters	that	are	used	to	configure	multi-rail	interfaces	for	the	local	node.			

	
From	the	lnetctl	command	we	have	these	parameters:	

net add: add a network 
--net: net ID (e.g. tcp0) 
--if: physical interface (e.g. eth0) 
--ip2net: specify networks based on IP address patterns 
--peer-timeout: time to wait before declaring a peer dead 
--peer-credits: define the max number of inflight messages 
--peer-buffer-credits: the number of buffer credits per peer 
--credits: Network Interface credits 
--cpt: CPU Partitions configured net uses (e.g. [0,1]) 

	
With	multi-rail,		

• --net - specifies	the	network	type	and	number.	Specifically,	tcp	specifies	Ethernet,	
o2ib	specifies	infiniband.	Note	that	this	no	longer	needs	to	be	unique,	because	multiple	
interfaces	can	be	added	to	the	same	network.		For	example:	tcp,tcp0,tcp1,tcp2	

• --if  - the	same	interface	per	network	can	be	added	only	once,	however	more	
than	one	interface	can	be	specified	(separated	by	a	comma)	for	this	node.		For	example: 
eth0,eth1,eth2 
 

Following	is	the	syntax	for	the	lnetctl	command	to	create	a	network	interface	with	
configuration	parameters:	



	 5	

lnetctl net add -h 
Usage: net add --net <network> --if <interface> [--peer-timeout 
<seconds>] 
[--ip2nets <pattern>] 
[--peer-credits <credits>] [--peer-buffer-credits <credits>] 
[--credits <credits>] [--cpt <partition list> 

Example:	
lnetctl net add --net tcp --if eth0 

Adding	remote	peers	that	are	multi-rail	capable	
When	configuring	peers,	use	the	–prim_nid	option	to	specify	the	key	or	primary	nid	of	the	peer	
node.		Then	follow	that	with	the	--nid	option	to	specify	a	set	of	comma	separated	NIDs.	

The	--prim-nid	(primary	nid	for	the	peer	node)	can	go	unspecified.		In	this	case,	the	first	listed	
NID	in	the	--nid	option	becomes	the	primary	nid	of	the	peer.	

lnetctl > peer add -h 
Usage: peer add --prim_nid <nid> --nid <nid[, nid, ...]> 

 
where: 

peer add: add a peer 
--prim_nid: primary NID of the peer 
--nid: comma separated list of peer nids (e.g.10.1.1.2@tcp0) 
--non_mr: if specified this interface is created as a non  
          mulit-rail capable peer. Only one NID can be specified   
          in this case. 

Example:	

Adding	remote	peers,	with	–prim_nid	explicitly	mentioned	
lnetctl peer add --prim_nid 10.10.10.2@tcp --nid 
10.10.3.3@tcp1,10.4.4.5@tcp2 

Adding	remote	peers	without	mentioning	–prim_nid.	In	this	case	the	first	listed	NID	in	the	–nid	
option	becomes	the	primary	NID	
lnetctl peer add --nid 10.10.10.2@tcp,10.10.3.3@tcp1,10.4.4.5@tcp2 
 
For	more	information	on	lnetctl	see	below.	

	
Tests	
Testing	of	the	Multi-Rail	feature	is	made	up	of	two	broad	categories;	functional	and	
performance.	Functional	testing:	does	the	feature	behave	as	is	expected	under	normal	and	error	
conditions.	Performance	testing:	does	this	feature	perform	as	expected	on	production-like	
network	configurations.	
	
Functional	Testing	
Functional	tests	are	expected	to	run	on	a	virtual	environment	if	desired.	Different	areas	for	
testing	have	been	identified.	Test	areas	includes,	but	is	not	limited	to:	
	
	



	 6	

	
New	feature	testing:	This	tests	new	features	that	have	previously	been	unavailable	in	LNet.	
	
New	configurations	are	exercised:		Aim	is	to	verify	the	configuration	changes	made	by	
running	the	unit	test	plan	as	described	in	the	tables	below.	Different	configurations	and	
interface	selection	and	message	sending	are	described	in	the	Scope	and	Requirement	document	
with	ID	cfg-	and	snd-	.	
	
Configuration	tests	should	be	done	through	the	DLC	direct	interface,	as	well	as	the	YAML	
interface.	It	requires	to	have	a	4	node	cluster	configured	with	multi-rail	as	mentioned	above.	
The	configuration	changes	include,	but	are	not	limited	to:	
	
Local	network	configuration:	
	
Test	ID	 Test	Description	
UT-0005	 § Configure	3	NIDs	on	the	same	TCP	network.	

§ Show	the	NIDs	
UT-0010	 • Configure	3	NIDs	on	the	same	IB	network	

Show	the	NIDs	
UT-0015	 • Configure	3	NIDs	on	the	same	TCP/IB	

Network	
• Show	the	NIDs	
• Delete	1	NID	from	the	TCP/IB	Network	
Show	the	NIDs	

UT-0020	 • Configure	2	NIDs	on	tcp0/o2ib0	
• Configure	2	NIDs	on	tcp1/o2ib1	
• Show	the	NIDs	
• Delete	1st	NID	from	tcp0	
• Delete	2nd	NID	from	tcp0	
• Show	NIDs	
 No	more	tcp	0	should	exist	
o2ib0	should	be	unaffected	

UT-0025	 • Configure	the	system	to	have	4	CPTs	
 options	libcfs	cpu_npartitions=4	

cpu_pattern="0[0]	1[1]	2[2]	
3[3]"	

• Configure	2	NIDs	on	tcp0	
 NID	1	should	be	on	CPTs	0,	3	
 NID	2	should	be	on	CPTs	1,	2	
• Show	NIDs	
proper	CPT	association	should	be	displayed	

UT-0030	 • Configure	the	system	to	have	4	CPTs	
 options	libcfs	cpu_npartitions=4	

cpu_pattern="0[0]	1[1]	2[2]	
3[3]"	

• Configure	3	NIDs	on	tcp0	
 NID	1	should	be	on	CPTs	0,	3	



	 7	

 NID	2	should	be	on	CPTs	1,	2	
 NID	3	should	be	on	all	CPTs	
• Show	NIDs	
 proper	CPT	association	should	be	

displayed	
NID	3	should	exist	on	all	CPTs	

UT-0035	 • Configure	1st	NID	on	tcp0	using	the	legacy	
ip2nets	parameter	from	DLC	

Show	NIDs	
UT-0040	 • Configure	1st	NID	on	tcp*/o2ib*	in	the	

following	ip2nets	form:	
 tcp(<eth	intf>)[<cpt>]	<pattern>	
Show	NIDs	to	ensure	that	the	interface	has	
been	added	to	the	correct	CPTs	

UT-0045	 • Configure	1st	NID	on	tcp*/o2ib*	in	the	
following	ip2nets	form:	

 tcp(<eth	intf>,	<eth	intf>,	...)[<cpt>]	
<pattern>	

 [<cpt>]	can	have	only	one	value	
Show	NIDs	to	ensure	that	the	interface	has	
been	added	to	the	correct	CPTs	

UT-0050	 • Configure	1st	NID	on	tcp*/o2ib*	in	the	
following	ip2nets	form:	

 tcp(<eth	intf>[<cpt>],	<eth	
intf>[<cpt>],	...)	<pattern>	

Show	NIDs	to	ensure	that	the	interface	has	
been	added	to	the	correct	CPTs	

UT-0070	 • Configure	NID	A,	B	and	C	on	tcp0/o2ib0	
Network	

• Configure	NID	A	and	B	on	tcp1/o2ib1	
Network	

• Show	the	NIDs	
Configuration	should	succeed.	NIs	can	exist	on	
different	networks	

UT-0090	 • 	 Configure	a	non-existent	NID	on	tcp0	
Configuration	should	fail	with	INVALID	
PARAMETER	

UT-0095	 • Configure	the	system	to	have	4	CPTs	
 options	libcfs	cpu_npartitions=4	

cpu_pattern="0[0]	1[1]	2[2]	
3[3]"	

• Configure	3	NIDs	on	tcp0	
 NID	1	should	be	on	CPTs	0,	4	
 NID	2	should	be	on	CPTs	1,	2	
 NID	3	should	be	on	all	CPTs	
• Show	NIDs	
NID	1	should	fail	since	no	CPT	4	



	 8	

UT-0096	 • Configure	1st	NID	on	tcp*/o2ib*	in	the	
following	ip2nets	form:	

 tcp(<eth	intf>,	<eth	intf>,	...)[<cpt,	
cpt>]	<pattern>	

Configuration	should	fail	with	syntax	error	
UT-0105	 Delete	a	non-existent	network	

Should	return	–EINVAL	
UT-0110	 Delete	a	non	existent	NID	on	tcp/o2ib	

Should	return	-EINVAL	
	
	
	
	
	
Remote	peer	configuration:	
	
Test	ID	 Test	Description	
UT-0115	 § add	a	new	peer	with	only	1	NID	
UT-0120	 § add	a	new	peer	with	only	1	NID	

§ add	more	nids	to	that	peer	
UT-0125	 § add	a	new	peer	with	mulitple	NIDs	
UT-0131	 § add	a	new	peer	with	multiple	NIDs	

§ delete	the	primary	NI	of	the	peer	
§ The	entire	peer	should	be	deleted.	

UT-0140	 § add	a	new	peer	with	multiple	NIDs	
§ Delete	all	NIDs	but	primary	NID	only.	
§ Re-add	multiple	NIDs	one	at	a	time.	

UT-0155	 § add	a	new	peer	with	32	NIDs	
UT-0165	 § load	lnet	

§ lnetctl	lnet	configure	
§ add	2	or	more	peers	on	a	non-local	network	
§ delete	peer	1	
§ delete	peer	2	

UT-0170	 § load	lnet	
§ lnetctl	lnet	configure	
§ add	2	or	more	peers	on	a	non-local	network	
§ lnetctl	lnet	unconfigure	
§ lustre_rmmod	

UT-0171	 § load	lnet	
§ lnetctl	lnet	configure	
§ add	2	or	more	peers	on	tcp1	(non-local)	
§ check	that	refcount	=	2	(1	for	hashlist	&	1	

for	remote	list)	
§ check	credits	are	not	set	
§ add	tcp1	network	
§ Check	refcount	1	(remote	list	refcount	

removed)	



	 9	

§ check	credits	are	set	
UT-0172	 § load	lnet	

§ lnetctl	lnet	configure	
§ add	2	or	more	peers	on	tcp1	(primary	peer	

ni)	
§ add	2	or	more	peers	on	tcp2	
§ add	tcp	1	and	tcp	2	networks	
§ remove	the	tcp1	network	
§ check	that	the	entire	peer	is	removed	

UT-0173	 § same	steps	as	above	
§ remove	a	tcp2	network	
§ check	that	all	peers	on	that	network	are	

removed.	
UT-0175	 § startup	lnet	

§ startup	traffic	
§ add	a	peer	ni	on	a	non-local	network	
§ add	a	local	network	for	that	peer	
§ Send	traffic	over	that	peer_ni	

UT-0176	 § startup	lnet	
§ add	tcp1	network	
§ add	peers	on	tcp1	network	
§ check	they	are	multi-rail	
§ run	taffic	
§ delete	the	peers	
§ peers	should	be	recreated	because	of	

traffic	and	they	should	be	non-mr	
UT-0185	 § add	a	peer	with	multiple	NIDs	

§ delete	a	non-existent	peer	NID	from	the	
peer	identified	by	key-NID	

UT-0190	 § add	peer	1	with	NIDs	A,	B	and	C	
§ add	peer	2	with	NIDs	D,	C	and	E	
§ Adding	NID	C	should	fail	

	
Policy	configuration:	
	
Test	ID	 Test	Description	
UT-0195	 § Set	the	NUMA	range	to	0	

§ The	NI	closest	to	the	message	memory	
NUMA	will	be	picked.	

UT-0205	 § Set	the	NUMA	range	to	a	large	value	
§ start	traffic	
§ NIs	are	picked	in	round	robin	

UT-0210	 § Set	the	NUMA	range	to	<	0	
§ This	should	be	rejected	

	
General	configuration:	
	



	 10	

Test	ID	 Test	Description	
UT-0215	 § Configure	multiple	NIs	

§ Configure	multipe	Peers	with	multiple	NIDs	
§ set	NUMA	range	value	
§ Dump	the	YAML	configuration	
§ use	the	YAML	configuration	file	to	delete	all	

configuration	
§ use	the	YAML	configuration	file	to	

reconfigure	the	node.	
	
Interface	Selection	ad	Message	Sending:	
	
Test	ID	 Test	Description	
UT-0220	 § Configure	3	NIs	with	equadistant	NUMA	

distance	
§ Send	three	or	more	messages	
§ Dump	statistics	on	each	NI	to	verify	that	

each	NI	was	used	to	send	messages	
UT-0225	 § Configure	3	NIs	closer	to	different	NUMA	

nodes	
§ dump	the	NI	statistics	
§ Verify	that	each	NI	has	the	correct	device	

CPT	
UT-0230	 § 	 Configure	3	NIs	with	different	NUMA	

distances	
§ Send	messages	
§ Confirm	through	statistics	that	messages	

are	being	sent	over	the	nearest	NI	(NUMA	
wise)	

UT-0235	 § Configure	2	NIs	with	different	NUMA	
distances	

§ Send	messages	
§ Confirm	through	statistics	that	messages	are	

being	sent	over	the	nearest	NI	(NUMA	
wise)	

§ add	another	NI	which	is	close	NUMA	wise	
than	the	current	nearest	

§ confirm	through	statistics	that	messages	
are	not	being	sent	over	the	newly	added	NI	

UT-0245	 § Configure	3	NIs	
§ set	the	NUMA	range	to	a	large	value	so	all	

NIs	are	considered	through	RR	
§ start	traffic	
§ monitor	statistics	on	each	NIs	to	confirm	all	

are	being	used.	
§ Remove	one	of	the	NIs	
§ Confirm	that	that	NI	is	no	longer	used	for	



	 11	

new	messages	
§ Confirm	that	the	other	2	NIs	are	being	used.	
§ No	messages	should	be	dropped.	

UT-0250	 § Configure	3	NIs	
§ Configure	a	peer	with	3	NIDs	
§ Send	messages	to	the	peer	
§ Confirm	through	statistics	that	peer	NIDs	

are	being	used	based	on	their	available	
credits.	

UT-0255	 § 	 Configure	3	NIs	which	are	not	equadistant	
all	on	the	same	network	

§ configure	a	peer	with	3	NIDs	all	on	the	same	
network	

§ start	traffic	
§ Confirm	closest	NUMA	NI	is	being	used	
§ Confirm	peer	NIDs	are	being	used	
§ set	NUMA	range	to	a	large	value	
§ Confirm	all	NIs	are	being	used	
§ Confirm	no	change	in	traffic	pattern	to	the	

peers	
UT-0260	 § Configure	NIs	A,	B	and	C	

§ Configure	the	peer	with	the	same	NIDs	
§ Send	1	message	which	requires	a	response	

from	NI	A	
§ Confirm	that	responses	are	being	sent	to	

the	same	NI	
UT-0265	 § Configure	NIs	A,	B	and	C	

§ Configure	the	peer	with	the	same	NIDs	
§ Send	1	message	which	requires	a	response	

from	NI	A	
§ bring	down	NI	A	
§ confirm	that	response	is	sent	to	one	of	the	

other	configured	NIDs	
UT-0310	 § Configure	an	MR	system	

§ Configure	peers	via	DLC	
§ Run	traffic	
§ Delete	one	of	the	peer_nis	we're	sending	to	

via	DLC	
§ Traffic	going	over	that	peer_ni	should	

continue	but	no	more	traffic	should	use	
that	NI	

UT-0315	 § Configure	an	MR	system	
§ Configure	peers	via	DLC	
§ Run	traffic	
§ Delete	one	of	the	peer_nis	we're	sending	to	

via	DLC	
§ Bring	that	peer_ni	back	



	 12	

§ Note	traffic	stops	and	starts	on	that	peer	
with	no	traffic	loss	

§ Repeat	the	deletion	and	reconfiguration	of	
the	peer_ni	

UT-0320	 § Configure	an	MR	system	
§ Configure	peers	via	DLC	
§ Run	traffic	
§ Delete	the	entire	peer	
§ The	peer	should	be	recreated	on	the	next	

message,	but	it	won't	be	MR	capable.	
	
	
Regression	Testing	
Lustre	file	system	regression	test,	AKA	Autotest:	The	code	base	successfully	pass	all	existing	Intel	
Autotest	test	suite.	Either	manually	or	automatically	run	the	Autotest	suite	and	post	the	results	
into	Maloo.	

o 1	Client,	1	MDS	and	1	OSS	with	MR	enabled	on	single	interface.	
	
Inter-operation:	Verify	multi-rail	with	non-multi-rail	interfaces.	Run	sanity	with	following	
configurations,	tests	should	pass:	
	
Server	 	 	 Client	 	 	 Router	
MR	Server	 	 Non-MR	Client	 	 Non-MR	Router	
MR	Server	 	 Non-MR	Client	 	 MR	Router	
Non-MR	Server	 	 Non-MR	Client	 	 MR	Router	
	
MR	Servers	 	 MR	Clients	 	 Non-MR	Router	
Non-MR	Servers	 MR	Clients	 	 Non-MR	Router	
Non-MR	Servers	 MR	Clients	 	 MR	Router	
	
Failure	and	recovery	testing	
	
All	existing	failure	and	recovery	tests	will	be	run	-
	https://wiki.hpdd.intel.com/display/ENG/Regression+Test+Suites+and+Failover+Test+Suites	
	
Upgrade/Downgrade	Testing	
	
The	description	of	upgrade/downgrade	scenarios	will	use	uprev	as	a	synonym	for	a	node	with	a	
multi-rail	capable	Lustre	version	installed.	A	downrev	is	a	node	with	an	older	version	of	Lustre	
install,	which	does	not	support	the	multi-rail	capability.	
	

• Upgrading	a	multi-rail	client	from	downrev	to	uprev,	with	uprev	servers.			
• Downgrading	a	multi-rail	client	from	uprev	to	downrev,	with	uprev	servers.			
• Upgrading	a	router	from	downrev	to	uprev			
• Downgrading	a	router	from	uprev	to	downrev		



	 13	

	
	
MR	Router	Testing	
	

1. Use	all	of	router	interfaces	
2. Bringing	down	the	router	and	then	bringing	it	up	again	while	traffic	is	running.	
3. Using	two	MR	routers:	Toggle	one	of	the	routers	up	and	down	and	determine	their	

behavior.	
4. Verify	interaction	between	routes	and	the	selection	algorithm:	When	routing	sender	

iterates	over	the	routers	interfaces	router	iterates	over	final	destination	interfaces	
	
Performance	Testing	
	
Hardware	Requirements:	
Client	1	

• Two	OPA	interfaces	
Client	2	

• Single	OPA	interface	
• Single	IB	interface	(EDR	preferably)	

LNet	Router	
• Two	OPA	interfaces	
• Two	IB	interfaces	(EDR	preferably)	

OSS	
• Two	IB	interfaces	(EDR	preferably)	

MDS	
• Single	OPA	interface	
• Single	IB	interface	(EDR	preferably)	

	
The	diagram	below	shows	how	these	nodes	should	be	wired.		We	can	use	virtual	nature	of	
LNet's	to	create	various	scenarios.		Usually,	all	nodes	have	built	in	Ethernet	ports.		If	so,	they	
should	all	be	wired	to	the	same	Ethernet	network.	
	
Performance	Testing	is	intended	to	be	performed	as	follows	for	this	feature:	
	

• Run	lnet_selftest	and	mdtest	on	single	client	with	single	interfaces	(both	OPA	and	IB).	
• Test	to	be	run	between	the	‘OSS’	and	‘MDS’	node	in	the	diagram,	and	‘client’	nodes,	

avoid	loss	through	switch	
o GOAL:	The	goal	is	to	baseline	nodes	and	cards	

• Run	lnet_selftest	and	mdtest,	but	route	through	OPA/IB	switch/LNET	router	
o GOAL:	The	goal	is	to	determine	loss	through	switch/router	path	

• Bind	interfaces	with	MR	
• Run	lnet_selftest	and	mdtest	from	single	node	to	single	node,	through	switch	
• Run	lnet_selftest	and	mdtest	from	all	nodes	to	all	nodes	
• GOAL:	The	final	goal	is	to	determine	performance	change	when	adding	MR.	



	 14	

	
	

	
lnetctl	Commands	added	or	changed:	
 	
The lnetctl utility	provides	a	command	line	interface.	As	part	of	the	Multi-Rail	project	the	
following	commands	shall	be	supported	

1. Adding/removing/showing	Network	Interfaces.			
2. Adding/removing/showing	peers.		
3. Each	peer	can	be	composed	of	one	or	more	peer	NIDs	
4. Adding/removing/showing	selection	policies		

	
	
Adding/removing	Network	Interfaces	
	
Adding	local	NI		
lnetctl Interface  
 
# --net no longer needs to be unique, since multiple interfaces 
can be added to the 
same network 
# --if: the same interface can be added only once. Moreover it 
can be defined as a set 
of comma 
#        separated list of interfaces 
#                Ex: eth0, eth1, eth2 
lnetctl > net add -h 
Usage: net add --net <network> --if <interface> [--peer-timeout 
<seconds>] 



	 15	

                 [--ip2nets <pattern>] 
                 [--peer-credits <credits>] [--peer-buffer-
credits <credits>] 
                 [--credits <credits>] [--cpt <partition list>] 
WHERE  
net add: add a network 
        --net: net name (e.g. tcp0) 
        --if: physical interface (e.g. eth0) 
        --ip2net: specify networks based on IP address patterns 
        --peer-timeout: time to wait before declaring a peer dead 
        --peer-credits: define the max number of inflight 
messages 
        --peer-buffer-credits: the number of buffer credits per 
peer 
        --credits: Network Interface credits 
        --cpt: CPU Partitions configured net uses (e.g. [0,1]) 

 
Removing	local	NI		
lnetctl Interface  
 
# In order to remain backward compatible, two forms of the 
command shall be allowed. 
# The first will delete the entire network and all network 
interfaces under it. 
# The second will delete a single network interface 
lnetctl > net del -h 
net del: delete a network 
Usage: net del --net <network> [--if <interface>] 
WHERE:  
 --net: net name (e.g. tcp0) 
 --if: interface name. (e.g. eth0) 
# If the --if parameter is specified, then this will 
specify exactly one NI to delete 
or a list 
# of NIs, since the --if parameter can be a comma separated 
list. 
# TODO: It is recommended that if the --if is not specified 
that all the interfaces 
are removed. 
 
Adding/removing	Peers	
	
Adding	Peer	NID		
lnetctl Interface  
�lnetctl > peer add -h 
Usage: peer add --nid <nid[, nid, ...]> 
 WHERE: �peer add: add a peer 



	 16	

        --nid: comma separated list of peer nids (e.g. 
10.1.1.2@tcp0) 
  
The --nid parameter	can	be	a	comma	separated	list	of	NIDs.	
	
Removing	Peer	NID	
lnetctl Interface  
 
lnetctl > peer del -h 
WHERE: 
peer add: add a peer 
--nid: comma separated list of peer nids (e.g. 
10.1.1.2@tcp0) 
	
Multiple	nids	can	be	deleted	by	using	a	comma	separated	list	of	NIDs	in	the	--nid	parameter.	
All	NIDs	must	be	for	the	same	peer.		
	
Adding/removing	Selection	Policies	
 
Selection	policy	rules	are	comprised	of	two	parts:		

1. The	matching	rule			
2. The	rule	action			

The	matching	rule	is	what's	used	to	match	a	NID	or	a	network.	The	action	is	what's	applied	when	
the	rule	is	matched.		
A	rule	can	be	uniquely	identified	using	the	matching	rule	or	an	internal	ID	which	assigned	by	the	
LNet	module	when	a	rule	is	added	and	returned	to	the	user	space	when	they	are	returned	as	a	
result	of	a	show	command.		
 
lnetctl Interface  
 
# Adding a network priority rule. If the NI under the 
network doesn't have 
# an explicit priority set, it'll inherit the network 
priority: 
lnetctl > selection net [add | del | show] -h 
Usage: selection net add --net <network name> --priority 
<priority> 
 
WHERE:  
 
selection net add: add a selection rule based on the 
network priority 
        --net: network string (e.g. o2ib or o2ib* or 
o2ib[1,2]) 
                 --priority: Rule priority 
 



	 17	

Usage: selection net del --net <network name> [--id <rule 
id>] 
 
WHERE: 
 
selection net del: delete a selection rule given the 
network patter or the id. If both are provided they need to 
match or an error is returned. 
        --net: network string (e.g. o2ib or o2ib* or 
o2ib[1,2]) 
                 --id: ID assigned to the rule returned by 
the show command. 
 
Usage: selection net show [--net <network name>] 
 
WHERE:  
 
selection net show: show selection rules and filter on 
network name if provided. 
        --net: network string (e.g. o2ib or o2ib* or 
o2ib[1,2]) 
 
# Add a NID priority rule. All NIDs added that match this 
pattern shall be assigned 
# the identified priority. When the selection algorithm 
runs it shall prefer NIDs with 
# higher priority. 
lnetctl > selection nid [add | del | show] -h 
Usage: selection nid add --nid <NID> --priority <priority> 
 
WHERE:  
 
selection nid add: add a selection rule based on the nid 
pattern 
                 --nid: nid pattern which follows the same 
syntax as ip2net 
                 --priority: Rule priority 
Usage: selection nid del --nid <NID> [--id <rule id>] 
 
WHERE: 
 
selection nid del: delete a selection rule given the nid 
patter or the id. If both are provided they need to match 
or an error is returned. 
        --nid: nid pattern which follows the same syntax as 
ip2net 
                 --id: ID assigned to the rule returned by 



	 18	

the show command. 

 
Usage: selection nid show [--nid <NID>] 
WHERE:  
 
selection nid show: show selection rules and filter on NID 
pattern if provided. 
        --nid: nid pattern which follows the same syntax as 
ip2net 
# Adding point to point rule. This creates an association 
between a local NI and a 
remote 
# NID, and assigns a priority to this relationship so that 
it's preferred when 
selecting a pathway.. 
lnetctl > selection peer [add | del | show] -h 
 
Usage: selection peer add --local <NID> --remote <NID> --
priority <priority> 
 
WHERE:  
 
selection peer add: add a selection rule based on local to 
remote pathway 
                 --local: nid pattern which follows the 
same syntax as ip2net 
                 --remote: nid pattern which follows the 
same syntax as ip2net 
                 --priority: Rule priority 
 
Usage: selection peer del --local <NID> --remote <NID> --id 
<ID> 
 
WHERE:  
 
selection peer del: delete a selection rule based on local 
to remote NID pattern or id 
                 --local: nid pattern which follows the 
same syntax as ip2net 
                 --remote: nid pattern which follows the 
same syntax as ip2net 
                 --id: ID of the rule as provided by the 
show command. 
 
Usage: selection peer show [--local <NID>] [--remote <NID>] 
 
WHERE:  



	 19	

 
selection peer show: show selection rules and filter on NID 
patterns if provided. 
                 --local: nid pattern which follows the 
same syntax as ip2net 
                 --remote: nid pattern which follows the 
same syntax as ip2net 
# the output will be of the same YAML format as the input 
described below. 

	


