
	 1	

Lustre	Feature	Test	Plan	for	

Data	on	MDT	
Revision:	v1	

Date:	11/20/2017	

Table	of	Contents	
Revision	History	...	2	
Introduction	...	3	
Use	Case	Scenario	..	3	
Feature	Overview	..	3	
Installation	...	3	
Configuration	..	3	

Tests	...	4	
Functional	Testing	..	4	
Inter-operation	..	7	
Failure	and	recovery	Testing	...	8	
Performance	Testing	...	8	

Documentation	...	8	
	

	

	 2	

Revision	History	
The	following	is	a	chronological	history	of	changes	made	to	this	document.	
	
Revision Date Reason for change Author
v.1 11/20/2017 Initial Version Saurabh	Tandan

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 3	

Introduction	
Lustre File System performance is currently optimized for large files. This results in
additional RPC round-trips to the OSTs, which hurt small file performance. The Data on
MDT (DOM) project aims to correct this deficiency by allowing the data for small files to
be placed on the MDT so that these additional RPCs can be eliminated and
performance correspondingly improved.

Users or system administrators will set a layout policy that locates files to be stored
entirely on an MDT. Files that grow beyond this size will be migrated onto OSTs.

This work is tracked with Lustre JIRA LU-3285 .

Use	Case	Scenario	
The following use cases are how we envision users using Data on MDT and/or
necessary configurations that should be tested.

1. New	files	are	created	with	an	explicit	layout	to	store	the	data	on	the	MDT.	
2. New	files	are	created	with	an	implicit	layout	to	store	the	data	on	the	MDT	inherited	

from	the	default	layout	stored	on	the	parent	directory.	
3. A	small	file	is	stored	without	the	overhead	of	creating	an	OST	object,	and	without	OST	

RPCs.	
4. A	small	file	is	retrieved	without	the	overhead	of	accessing	an	OST	object,	and	without	

OST	RPCs.	
5. A	client	accesses	a	small	file	and	has	the	file	attributes,	lock,	and	data	returned	with	a	

single	RPC.	
6. An	administrator	sets	a	global	maximum	size	limit	for	small	files	stored	on	the	MDT(s).	

Files	larger	than	this	value	do	not	store	their	data	on	an	MDT.	
	

Feature	Overview	

Installation	
Data on MDT is already a feature targeted in Community 2.11 and will be installed by
default; no special requirement for installation.

Configuration	
DoM	is	configured	like	any	other	composite	file:	

lfs setstripe -E 1M -L mdt dom_file

The	new	option	here	is	‘-L’	which	stands	for	‘layout’.	The	lfs	command	above	creates	a	
composite	file	with	the	first	component	on	a	MDT	with	size	1M.	Other	than	‘mdt’	, ‘-L’	
accepts	‘raid0’	and	‘released’	options.	
The	user	can	decide	the	max	size	limit	for	file/directory	for	it	to	be	DOM	simply	by	setting	size	of	
the	first	entry	via	-E	option.	Note,	this	doesn’t	mean	that	all	files	below	1M	will	be	DOM	files;	

	 4	

this	is	set	for	a	particular	file	or	directory..	Each	file	that	have	layout	on	MDT	has	it’s	own	setting	
and	it’s	sub-directories	can	inherit	that	layout.	
	The	DoM	size	limit	can	be	configured	using	the	parameter	‘dom_stripesize’	of	the	
Layered	Object	Device	(LOD)	and	can	be	set	with	following	command:	

lctl set_param lod.*.dom_stripesize=<limit>
	
Default	value	is	1M	(megabytes),	maximum	value	is		1G	(gigabytes).	Note,	that	setting	this	
parameter	to	0	can	be	used	as	‘disabler’	for	DoM	on	particular	server.	
	
The	'-L mdt’	option	can	also	be	used	in	‘lfs find’	and	‘lfs getstripe’	to	find/check	
files	with	mdt	component.	These	features	are	tested	in	sanity.sh	test_270a,	test_270e	
respectively.	
	
Example:	
lfs find -L mdt –type f dom_file

lfs getstripe -L mdt dom_file

Tests	
Testing	of	the	Data	on	MDT	feature	is	made	up	of	four	main	categories;	functional,	
performance,	recovery,	and	interoperability.	Functional	testing:	does	the	feature	behave	as	
expected	under	normal	and	error	conditions.	Performance	testing:	an	additional	script	
“dom_performance.sh”	was	added	to	compare	the	performance	for	normal	files	and	dom	files.	
Recovery:	does	this	feature	behave	normally	under	failure	conditions.	Interoperability	testing:	is	
new	Lustre	with	this	feature	compatible	with	older	Lustre	version	without	this	feature.	
There	are	two	test	scripts	added	as	part	of	this	feature	to	the	test	environment:	sanity-dom.sh	
and	dom-performance.sh.	
	
All	the	Lustre	test	suites	will	be	run	and	should	pass	with	default	Data	on	MDT	file	layout	on	the	
mount	point.	

Functional	Testing	
Functional	tests	are	expected	to	run	on	an	automated	virtual	environment.	
	
sanity-dom.sh	
	
Test	ID	 Test	Description	 Comment	
test_1()	 • Write	a	file	on	one	mount	

• Truncate	on	the	other	
• Write	again

	

test_2()	
	

• Write	with	a	seek	
• Then	append	
• And	finally,	read	from	a	

single	mountpoint

	

	 5	

test_3()	 Truncate	over	DoM	size	on	
different	nodes	

• Write	on	one	node	to	the	
DoM	stripe	and	then	
truncate	to	over	DoM	size	

• Read	on	the	second	node	
inside	DoM	stripe	to	take	a	
lock	data	from	the	first	
client	

• Now	do	local	truncate	over	
DoM	size	and	check	size	is	
correct	

	

test_fsx()	
	

Replica	of	sanityn	test_16	but	with	
DoM	layout	

• Runs	fsx	test	from	two	
clients	

• Does	read/write/truncate	
in	different	combinations	
from	both	clients	

	

	

test_sanity()	 Run	some	of	the	sanity.sh	subtests	
with	Data-on-MDT	
List	of	sanity	subtests	run	under	
this	subtest:	36	39	40	41	42	43	46	
56r	101e	119a	131	150	155a	155b	
155c	155d	207	241	251

	

test_sanityn()	 Run	some	of	the	sanityn.sh	
subtests	with	Data-on-MDT	
List	of	sanityn.sh	subtests	run	
under	this	subtest:	1	2	4	5	6	7	8	9	
10	11	12	14	17	19	20	23	27	39	51a	
51c	51d

	

	
sanity.sh	
	
Test	ID	 Test	Description	 Comments	
test_270a()	 DoM:	Basic	functionality	tests	

• create	DoM	file	
• Skip	free	space	checks	

with	ZFS	
• Write	DoM	file	
• Also	check	direct	IO	along	

write	
• Truncate	DoM	file	
• Append	to	DoM	file	
• Delete	DoM	file	
• Combined	striping	

Use	case	(1)	

	 6	

• Also	check	direct	IO	along	
write	

	
test_270b()	 DoM:	Maximum	size	overflow	

checks	for	DoM-only	file	
• Truncate	over	the	limit	
• Write	over	the	limit	
• Append	over	the	limit	

Use	case	(7)	

test_270c()	 DoM:	DoM	EA	inheritance	tests	
• Check	files	inherit	DoM	EA	
• Check	directory	inherits	

DoM	EA	and	use	it	as	
default	

Use	case(2)	

test_270d()	 DoM:	Change	striping	from	DoM	
to	RAID0	

• Inherit	default	DoM	
striping	

• Change	default	directory	
striping	

Use	case(2)	

test_270e()	 DoM:	Testing	“lfs	find”	with	DoM	
files	test	

• Find	DoM	files	by	layout	
• There	should	be	1	dir	with	

default	DOM	striping	
• Find	DoM	files	by	stripe	

size	
• Find	files	by	stripe	offset	

except	DoM	files	

	

test_270f()	 DoM:	maximum	DoM	stripe	size	
checks	

• Exceed	maximum	stripe	
size	

• Too	low	values	to	be	
aligned	with	smallest	
stripe	size	64K	

Use	case	(6)	

test_271a()	 DoM:	Cache	data	for	read	after	
write	

	

test_271b()	 DoM:	no	glimpse	RPC	for	stat	-	
only	for	DoM	files	

Use	case(3),	Use	case(4)	

test_271ba()	 DoM:	no	glimpse	RPC	for	stat	–	
combined	files	

Use	case(3),	Use	case(4)	

test_271c()	 DoM:	IO	lock	at	open	saves	
enqueue	RPCs	

Use	case(3),	Use	case(4)	

	
	
	

	 7	

sanityn.sh	
	
Test	ID	 Test	Description	 Comments	
test_100a()	 DoM:	Glimpse	RPCs	for	stat	

without	IO	lock	(DoM	only	file)	
• First	stat	from	server	

should	return	size	data	
and	save	glimpse	

• Second	stat	to	check	size	
is	NOT	cached	on	client	
without	IO	lock	

Use	case(3),	Use	case(4)	

test_100b()	 DoM:	No	glimpse	RPC	for	stat	with	
IO	lock	(DoM	only	file)	

• First	stat?	
• Second	stat	to	check	size	

is	cached	on	client	

Use	case(3),	Use	case(4)	

test_100c()	 DoM:	Write	vs	Stat	without	IO	
lock	(combined	file)	

• Check’s	that	size	is	
merged	from	MDT	and	
OST	correctly	

	

test_100d()	 DoM:	Write+Truncate	vs	Stat	
without	IO	lock	(combined	file)	

• Check’s	that	reported	size	
is	valid	after	file	grows	to	
OST	and	is	truncated	back	
to	MDT	stripe	size	

	

test_101a()	 Discard	DoM	data	on	unlink	 	
test_101b()	 Discard	DoM	data	on	rename	 	
test_101c()	 Discard	DoM	data	on	close-unlink	 	
	

Inter-operation	
Lustre	clients	from	the	latest	2.10	and	earlier	will	not	be	able	to	read	small	files	on	
MDTs	created	by	Lustre	2.11	clients.	The	older	clients	will	return	an	‘–EINVAL’	i.e.	
number	‘-22’		error	message	due	to	not	understanding	the	new	DOM	file	layout.	
There	is	also	no	way	for	these	clients	to	access	the	file	data	on	the	MDT,	so	no	
compatibility	mode	is	possible.	
Accessing Lustre files systems from clients of different versions is a supported
configuration. A large site may have a file system shared between different systems
where the clients are upgraded independently. Since files are only created with DOM
by request, it is possible for DOM-capable clients connected to a DOM-capable server
to create DOM files while non-DOM-capable clients are still accessing the filesystem.
To avoid an old client seeing errors when trying to access files created with DOM by a
new client, either all of the clients should be upgraded before the servers, or an
administrator may disable DOM explicitly on the MDT(s) until all clients are

	 8	

upgraded. The mechanism for how to disable Data on MDT is discussed in the high
level design.

Failure	and	recovery	Testing	
	
All	existing	failure	and	recovery	tests	will	be	run	-
	https://wiki.hpdd.intel.com/display/ENG/Regression+Test+Suites+and+Failover+Test+Suites	
	

Performance	Testing	
	
Additional	 script	 “dom-performance.sh”	 has	 been	 added	 to	 the	 test	 suite	 to	 compare	 the	
performance	 benefits	 between	 the	 normal	 file	 and	 DoM	 file.	We	expect	 better	 stat,	 read,	
append	and	partially	write	performance	for	DoM	files.	If	the	same	file	is	stored	on	MDT	and	OST,	
the	 file	 stored	on	MDT	will	 be	 retrieved	 faster	 as	 there	will	 be	 less	RPCs,	 given	 that	 the	both	
servers	are	identical.	But	at	the	same	time	it	is	hard	to	say	exactly	about	numbers.	It	depends	on	
server	hardware	and	cluster	configuration,	e.g.	normal	file	creation/write	is	balanced	among	all	
OSTs,	while	DOM	goes	to	the	singe	MDT	in	most	cases,	so	benefits	of	DOM	may	be	hidden	by	
this.	Also	it	depends	on	cluster	itself,	since	DoM	saves	RPCs.	Hence,	better	effect	will	be	seen	on	
clusters	 where	 network	 is	 a	 bottleneck,	 not	 disk,	 otherwise,	 with	 lightning-speed	 network	
results	will	depends	only	on	 server	hardware	mostly.	 If	 the	 file	grows	beyond	 the	DoM	size	 it	
grows	right	 to	 the	OST	objects	hence	the	performance	 for	 it	 is	 same	as	 for	 the	normal	 files	 in	
that	case.	
	
The	following	tests	will	be	run	for	both	normal	file	and	DoM	file	and	later	compared	for	
performance	between	them:		
	
	

• Mdtest	
• IOR	
• Dbench	
• Smallfile	
• Smalliomany	

	
Benchmarks	IOR,	MDtest	and	FIO	were	run	with	configuration	of	10	clients,	2	MDTs	
on	2	MDS	each	and	4	OSTs	on	2	OSSs	each	which	confirms	the	above	mentioned	
improvements.	

Documentation	
	
For	any	more	information	please	refer	to	LUDOC-385	.	

