
Idea of Metadata Writeback Cache for Lustre

Oleg Drokin

Apr 23, 2018

* Some names and brands may be claimed as the property of others.



Current Lustre caching

• Data:

• Fully cached on reads and writes in face of no contention

• Really fast as the result (grant is another consideration)

• Metadata:

• Only reads are cached

• All modifications are sluggish as the result

• Even non modifications like opens are also sluggish

• As the result – multiple proposals for extra caching were made

• Amongst them subtree locks

• PCC is another project aiming at this problem from another angle

• Fujitsu had a similar one in the past

2



So how hard metadata caching could really be

• I set out to find limits of easy with a prototype

• If we create a dir, we know 100% all the names inside

• Just get the exclusive lock and nobody else would interfere

• We could accumulate normal names

• Serve readdir out of dcache

• Even store file data totally in pagecache without talking to mds

• Ramfs of sorts

• Overall the idea sounds pretty simple, right?

3



Implementation notes

• Mkdir is a reint create RPC, no locks.

• Server actually has reint create handler, but it’s not used

• And sending a create intent results in LBUG

• Making client to send mkdir as intent create is pretty easy

• Making server return EXclusive lock if the create succeeded is easy 
as well.

• Flag such directories on the client as “fully locally owned”

4



Magic begins

• For “fully locally owned” directories we can override everything

• All lookups are either in local cache or are safely negative

• All creates go straight to dcache and stay there

• Client side FID allocation allows for consistent FIDs even if we 
want to flush to server later

• All unlinks just remove dcache entries

• Same dir or subdir renames are dcache-only ops

• Hardlinks in this subtree is really easy too

• Stat just reads data from inode

• Attaching file data to locally owned files is pretty easy.

5



But what if the lock is cancelled

• Iterate over the directory entries in the cache

• For every entry do intent-create RPC with “I got the parent lock”

• We get EX lock back, for subdirs that means the subtree is 
preserved

• For files that means we get to keep our file data safely until we 
establish layout and grab proper data locks

• Other entries don’t care

• Hardlink is a major complication since we cannot do create

• Once all entries are done with – drop the lock and the directory is 
magically visible to all clients.

• This is a real easy conversion path back to shared access unlike 
other approaches.

6



EXclusive metadata lock – like a data lock

• Allows the client to operate on locked directories without 
deadlocks

• A hard requirement for the whole scheme

• Just like with data locks – we can send/execute metadata ops 
under metadata EX locks

• Every RPC that furnishes “parent EX lock” prolongs the lock so it 
does not time out prematurely

7



Data writeback handling

• We already have the data in the pagecache, but CLIO knows 
nothing about it.

• To assimilate data first we need the layout and data locks.

• We must enqueue the locks while still holding the exclusive layout 
lock so nothing can peek in the file

• Very similar to HSM restore

• Once we got the locks – simply add CLIO data structures to existing 
pages (convenient cl_page_find()-> cl_io_commit_async() )

• Would be better to be able to just do cl_lpage_alloc

• Thanks to Jinshan for guidance

• Once file reverts to normal Lustre file, with regular writeback

8



The result

• As expected, uncontended operations just fly at unbelievable 
speeds

• 10x-20x improvement in createmany performance on local VMs

• FPP mdtest with 16 clients – ~6M/sec cumulative ops

• Unpacking linux kernel tarball – 10 seconds (vs 210s)

• Actual workloads improve too

• Building Lustre in VM – 25%+ improvement on idle servers
• Overloaded servers are not affecting WBC operations

• Building rhel7.4 kernel on real HW 4.5m (vs 

• Would really shine in interactive kind of workloads with congested 
servers

9



Limitations – “benchmark cache mode”

• Great “benchmark” workload handler

• Create X files, stat, remove -> 0 RPCs need to be sent

• No accounting (changelog)

• Bursty flushes on lock cancels instead of smoothed trickling out

• Operating on preexisting directories is complicated.

10



Another mode – write behind cache

• Every operation creates suitable RPC that is sent asynchronously

• Userspace gets control right away so they are not impacted

• Smoothes server load – useful for real workloads

• Untar archive and it starts to trickle out right away

• We know that data we write WILL be used by other nodes

• No ‘cancelling of operations’, but changelogs become possible

• Easier to work with preexisting directories

• Read in the data into cache and get an EX lock, done.

• Readdir/readdir+ alike combining would help

• Decided by the server

11



Other possible improvement ways

• Compounding multiple operations into a single network RPC

• Now that we actually have string of operations cached

• DoM can get create+data sort of RPCs for small file writes

• Hooks for more permanent storage of cached data on clients

• Log-based fs of some sort? Just cachefs?

12



Prototype limitations

• No hardlinks

• Root only file ownership on flush

• No error handling

• DNE status unknown

• Based on 2.11 release for rhel7.4 only

• No xattrs/posix ACLs

• No grants/limits/accounting

• Sync is noop

• No memory use limits

• Only “benchmark mode” implemented

13



Conclusion

• Many aspects are not as hard as they seemed at first

• Some parts are useful on their own

• Even limited implementations would have successful niches

• You can see my prototype patches linked from LU-10938

14



Questions?

Questions?

15




