Lustre Feature Test Plan for
Persistent Client Cache

Revision <0.2>
<2019/04/28>

[bookmark: _Toc10206431]Revision History
The following is a chronological history of changes made to this document.

	Revision
	Date
	Reason for change
	Author

	0.1
	2019/04/28
	Initial Version
	Qian Yingjin

	0.2
	2019/05/27
	Add more auto test cases
	Qian Yingjin

	
	
	
	

	
	
	
	

Table of Contents
Revision History	2
Introduction	4
Documentation	5
Feature Installation and Set-up	5
Functional and Regression Tests	5
Manual Testing	7
Interoperability	9
Performance Testing	9
User Interface	9
Feature Interaction	9
What Not to Test	9
Results	9

[bookmark: _Toc10206432]Introduction
Lustre Persistent Client Caching (LPCC) mechanism is combined with the hierarchical storage management (HSM) and layout lock mechanisms of Lustre to provide persistent caching services. This enables I/O applications to read and write data from client nodes without losing the benefits of the global Lustre namespace.
PCC provides a group of local caches and works in two modes: RW-PCC enables a read-write cache on the local SSDs of a single client; RO-PCC provides a read-only cache on the local SSDs of multiple clients. Less overhead is visible to the applications and network latencies and lock conflicts can be significantly reduced.
The main advantages to use this SSD cache on the Lustre clients is that:
· The I/O stack becomes seemingly much simpler for the cached data, as
 there is no interference with IOs from other clients, which enables
 easier performance optimizations;
· The requirements on the HW inside the client nodes are small, any kind of SSDs or even HDDs can be used as cache devices;
· Caching reduces the pressure on the object storage targets (OSTs), as small or random IOs can be regularized to big sequential IOs and temporary files do not even need to be flushed to OSTs.
More details about PCC Hight Level Design (HLD) can be found at URL:
https://wiki.whamcloud.com/pages/viewpage.action?spaceKey=ENG&title=Persistent+Client+Cache+%28PCC%29+HLD

Tickets and patches that this feature in Phase 1 is being tracked under:
	Patch
	LU Ticket
	Description

	https://review.whamcloud.com/32963/
	LU-10092
	Add persistent cache on client

	https://review.whamcloud.com/32966/
	LU-10092
	Non-blocking PCC caching

	https://review.whamcloud.com/34637/
	LU-10092
	Security and permission for non-root user access

	https://review.whamcloud.com/34751/
	LU-10918
	Rule based auto RW-PCC caching when create files

	https://review.whamcloud.com/33787/
	LU-10092
	Auto attach at open for still valid cached PCC file

	https://review.whamcloud.com/33844/
	LU-10092
	change detach behavior and add keep option

	https://review.whamcloud.com/32998/
	LU-10499
	Add read-only mode for PCC

	https://review.whamcloud.com/33942/
	LU-11829	
	Separate the naming structure between RW-PCC and RO-PCC

[bookmark: _Toc10206433]Documentation
We can find documentation describing the feature and how it works under LUDOC-432 (https://review.whamcloud.com/34769/) and a simple Howto at the URL https://wiki.whamcloud.com/display/ENG/PCC+Howto+Guide.

[bookmark: _Toc10206434]Feature Installation and Set-up
RW-PCC uses Lustre HSM mechanisms for data synchronization. Before using RW-PCC, a coordinator must be activated on each of your filesystem MDTs. This can be achieved with the following commands run on each MDS for each MDT with the correct MDT index:
$ lctl set_param mdt. $FSNAME-MDT0000.hsm_control=enabled
mdt.lustre-MDT0000.hsm_control=enabled
And then, launch the copytool on each agent node (PCC client node) to connect to your HSM storage. If your HSM storage has POSIX access this command will be of the form:
$ lhsmtool_posix --daemon --hsm-root $PCCPATH --archive=$ARCHIVE_ID $LUSTREPATH
A PCC backend can provide caching services for both RW-PCC and RO-PCC. If the PCC backend is only used as RO-PCC, it does not need to setup a Lustre/HSM configuration.
[bookmark: _Toc10206435]Functional and Regression Tests
Tests have been added to the Lustre test suites (sanity-pcc.sh) to cover this feature during autotesting. The sanity-pcc.sh test suite will be run to verify no functional regression resulted from addition of this feature.
The following test suites were added to cover the PCC feature:
	test_1a
	Test manual lfs pcc attach with manual HSM restore (RW-PCC)

	test_1b
	Test manual lfs pcc attach with restore on remote access (RW-PCC)

	test_1c
	Test automated attach using project with manual HSM restore (RW-PCC)

	test_1d
	Test project ID with remote access (RW-PCC)

	test_1e
	Test RW-PCC with non-root user

	test_1f
	Test auto RW-PCC cache with non-root user

	test_1g
	General permission test for RW-PCC

	test_2a
	Test multiple open when creating (RW-PCC)

	test_2b
	Test multiple remote open when creating (RW-PCC)

	test_2c
	Test multiple open on different mount points on the same client when creating (RW-PCC)

	test_3a
	Repeat attach/detach testing (RW-PCC and RO-PCC)

	test_3b
	Repeat attach/detach testing on multiple clients (RW-PCC and RO-PCC)

	test_4
	Auto RW-PCC caching test for mmap via mmap_sanity

	test_5
	Mmap & cat a RW-PCC cached file

	test_6
	Test mmap write on RW-PCC	

	test_7a
	Fake file detached between fault() and page_mkwrite() for RW-PCC

	test_7b
	Test the race with concurrent mkwrite() and detach

	test_8
	Test fake -ENOSPC tolerance for RW-PCC

	test_9
	Test real -ENOSPC tolerance on loop PCC device for RW-PCC

	test_10a
	Test RW-PCC with user quota on loop PCC device (cache isolation and -EDQUOT tolerance)

	test_10b
	Test RW-PCC with group quota on loop PCC device (cache isolation and -EDQUOT tolerance)

	test_10c
	Test RO-PCC with user quota on loop PCC device (cache isolation and -EDQUOT tolerance)

	test_10d
	Test RO-PCC with group quota on loop PCC device (cache isolation and -EDQUOT tolerance)

	test_11
	Test attach with fault injection of immutable PCC parent directory

	test_12
	RW-PCC attach races with concurrent HSM remove

	test_13a
	Test auto RW-PCC create caching for UID/GID rule

	test_13b
	Test auto RW-PCC create caching for the rule of file name with wildcard

	test_13c
	Test auto RW-PCC create caching for complex rule with UID/GID/projID/fname.

	test_14
	Revocation of the layout lock should detach the file automatically

	test_15
	Test auto attach at the next open when file is still valid in cache (RW-PCC and RO-PCC)

	test_16
	Test detach with different options (RW-PCC and RO-PCC)

	test_17
	Test RO-PCC attach for the HSM released file

	test_18
	Test write/truncate/mmap-write invalidating RO-PCC caching

	test_19a
	Test RO-PCC with non-root user

	test_19b
	General permission test for RO-PCC

	test_20
	Tolerate fake read failure for RO-PCC

	test_21
	Repeat the attach/detach when the file has multiple openers

	test_22
	Auto attach at open when the file has multiple openers

	test_23
	RW-PCC attach should fail when the file has cluster-wide openers

	test_24
	Test separated naming structure between RW-PCC and RO-PCC

[bookmark: _Toc10206436]Manual Testing
1. Pressure Test via compilebench:
We should run “compilebench” on a single client with/without the feature of auto attach at open when the file is still valid cached (This can be enabled via setup configuration parameter of a PCC backend “open_attach=1”). The reason is that compilebench will reclaim the cached inodes by running command “echo 3 > /proc/sys/vm/drop_caches” during the test, which will cause the previously attached files to be detached passively.
Download compilebench from: https://oss.oracle.com/~mason/compilebench/.
The commands are as follows:
MDS
mkfs.lustre --fsname=lustre --mgs --mdt --index=0 --reformat /dev/sdb1
tune2fs -O project /dev/sdb1
mount.lustre /dev/sdb1 /mnt/mdt0
lctl set_param mdt.lustre-MDT0000.hsm_control=enabled

OST
mkfs.lustre --fsname=lustre --mgsnode=192.168.59.135@tcp --ost --index=0 --reformat /dev/sdb2
tune2fs -O project /dev/sdb2
mount.lustre /dev/sdb2 /mnt/ost0

client
mount.lustre 192.168.59.135@tcp:/lustre /mnt/lustre
lhsmtool_posix --daemon --hsm-root /mnt/pcc --archive=2 /mnt/lustre < /dev/null > /tmp/copytool_log 2>&1
mkdir /mnt/lustre/lpcc
lfs project -sp 100 /mnt/lustre/lpcc
lctl pcc add /mnt/lustre /mnt/pcc -p “projid={100} rwid=2”
compilebench -D /mnt/lustre/lpcc -i 10 -r 20
lctl pcc clear
lctl pcc add /mnt/lustre /mnt/pcc -p “projid={100} rwid=2 open_attach=1”
compilebench -D /mnt/lustre/lpcc -i 10 -r 20

2. Tolerate -ENOSPC error when RW-PCC backend is nearly full
After the file is attached into RW-PCC, append write the file (via dd or fio) until run out of the space capacity of PCC backend. From the periodic output of fio, it can be observed that the IO is suspended for a moment and restart again. This is because after return of -ENOSPC from PCC write, the IO will fall back to normal Lustre I/O path. It will trigger data restore from PCC (HSM) to Lustre OSTs. After finished data restore, the IO will be continued. (This test is already included in sanity-pcc.sh test suit by using the loop device.)

3. Test PCC with FLR files
As RO-PCC adds a new layout flag LOV_PATTERN_F_RDONLY and FLR also has RDONLY state, we should test the interaction of this new layout flag with FLR to see some usage of PCC-RO and FLR on the same files.

4. Interoperability test with the older client not support PCC
Any older client version that supports HSM properly should be able to trigger the RW-PCC restore correctly. If a PCC backend is only used for RW-PCC caching, the older clients with HSM support can be coexisted with the client supporting PCC. However, if the PCC backend is also used for RO-PCC caching, it may result in inconsistent data access.
[bookmark: _Toc10206437]Interoperability
The PCC feature is not compatible with any Lustre versions prior to 2.12.53 without the PCC connection flag.
[bookmark: _Toc10206438]Performance Testing
We should run performance testing at scale to verify that PCC performance speed-ups linearly with the number of clients and the stat performance can be also improved compared with files with many stripes as the size is taken directly from local PCC.
[bookmark: _Toc10206439]User Interface
Lustre provides lctl pcc add|del|clear|list command line tools for an administrator to config or show PCC backends on a client; Lustre also provides lfs pcc attach|detach|state command line tools for users to interact with PCC feature. See LUDOC-432 (PCC Lustre manual) for details.
[bookmark: _Toc10206440]Feature Interaction
PCC only works with regular file type.
[bookmark: _Toc10206441]What Not to Test
When a file is attached into RW-PCC on a client, the size returned from the MDT to another client is 0 as the file is HSM released. Thus, current PCC cannot ensure strong size consistence among clients. During tests we found that the benchmark result with fio read from another client was wrong, but IOR read can perform as normal.
[bookmark: _Toc10206442]Results
Early evaluation of PCC has presented in the paper submitted to SC19. Comparisons with a standard Lustre installation, with the Lustre extension Data on MDT (DoM), and the distributed caching approach FS-Cache show PCC’s advantages for various workloads, enabling even speed-ups linear in the number of clients for several real-world scenarios.
