
Self Extending Layout Test Plan

Title Self Extending Layout Test Plan

Summary Self-Extending Layout feature Test Plan

Owner Vitaly Fertman

Task List Inspection Alexey Lyashkov

Inspection Elena Gryaznova

Version 0.1

Last Update 30 May 2019

History of changes

Table of contents

Introduction
Feature Installation and Set-UP
Regression Tests
New feature functional tests
Performance

Large IO Performance
Default (non-SEL layout) to confirm there is no regression in the base performance.
Set of SEL performance tests to show the performance dependancy on the extension size.
3. Set of SEL performance tests to show the performance dependancy on the stripe count.
4. IO performance with MD load in background.

Small IO performance
MD performance
Scale tests

New Feature Stress Tests
Racer

Interoperability
Feature interaction

HSM
LFSCK
Snapshot
Distributed Name Space (DNE)
DOM

Documentation

Introduction

The document is intended to describe to the test plan for the Self Extended Layout (SEL) Lustre feature. This is an extension of the Partial
File Layout (PFL) feature which allows to create a file layout with components followed by a new type uninitialised component - "extension
space" components. When file access reaches this extension space, the system can check if there is still a sufficient amount of space
available on the current OSTs and extend the length of the previous component, allowing the IO to continue on the same OSTs. If there is not
enough space on the current OSTs, it will not extend the current component, and will instead modify the layout to switch to a new component
on new OSTs. More details could be found here: . The purpose of the feature is to mitigate theHLD: Spillover Space - Self-Extending Layouts
ENOSPC problem while using a small SSD OST pool to let IO automatically to spill over to a large HDD pool.

Feature Installation and Set-UP

The SEL feature is new to Lustre 2.13 and does not require any commands to enable the feature. The definition of the SEL layout for
component files can be set for the whole file system, for a directory or for a specific file with the use of or using the new API lfs-setstripe llapi_l

method.ayout_extension_size_set

https://connect.us.cray.com/confluence/display/~c17818
https://connect.us.cray.com/confluence/display/~c17817
https://connect.us.cray.com/confluence/display/~c17455
https://connect.us.cray.com/confluence/display/LUSTRE/HLD%3A+Spillover+Space+-+Self-Extending+Layouts

1.

2.

Regression Tests

The acceptance-small test suites are to be run with a default layout specified for the file system to verify there is no functional
regressions of existing testing.
A defined acceptance-small tests are also to be run with a set of SEL layouts specified for the file system to verify there is no
functional regressions while working with SEL-enabled files. The set of SEL layouts to be verified is:

simple SEL layout: lfs setstripe -E -1 -z 64M ROOT_DIR
SEL as not the last component: lfs setstripe -E 128M -z64M -E -1 -z 128M ROOT_DIR

Parameters are to be chosen so that the IO reaches the SEL component, i.e. IO must be larger than the first component size.

TBD: define the list of acceptance-small tests to be run.

New feature testsfunctional

There is a set of code paths which is checked by new tests

code path action test# covering it

A1. IO to a SEL component. The previous component is (no flag " " on the component). The OST assignment for thenot INIT'ed init
previous component fails due to OOS

a. A next component exists Remove both the SEL and the previous components, S
pillover.

sanity-pfl 20b, 21b

sanity-flr 204c

b. No next component Error sanity-pfl 20d

c. No next component, the previous component
is a repeated one

Remove the previous (repeated) component, force the
extension of the original previous component

22c, 22dsanity-pfl

A2. The OST assignment for the previous component succeeded but its extension fails due to low on space.not INIT'ed

a. A next component exists Remove both the SEL and the previous components, S
pillover.

sanity-pfl 20e 23e

b. No next component Force the extension of the previous component sanity-pfl 20d 23c

c. No next component, the previous component
is a repeated one

Remove the previous (repeated) component, force the
extension of the original previous component

sanity-pfl 22d

sanity-flr 204f

A3. The extension of the previous component fails due to low on spaceINIT'ed

a. A next component exists Remove the SEL component, Spillover. 20a

b. No next component Repeat the previous component. 22a 22b 22c sanity-pfl 22d
23f

204e 204fsanity-flr 204d

c. No next component, the previous component
is a repeated one

<impossible>

A4. The previous component gets OSTINIT'ed
assigned and extended, SEL is left

The previous component is extended, the SEL is
shortened.

sanity-pfl 19a, 19b, 19c,
20a, 22a, 22b, 22c

A5. The previous component getsnot INIT'ed
OST assigned and extended, SEL is left

The previous component gets OST assigned and
extended

sanity-pfl 19e, 20a, 20b,
21a, 21b, 22a, 22b, 22c
sanity-flr 204a 204b 204d
204e

A6. The previous INIT'ed component gets OST assigned and extended, SEL is not left

a. A next component exists The previous component is extended, SEL is removed sanity-pfl 19c, 19d

b. No next component The previous component is extended to EOF, SEL is
removed (a-la append)

sanity-pfl 23a

1.

2.

1.

2.

c. No next component, the previous component
is a repeated one

<impossible>

A7. The previous not INIT'ed component gets OST assigned and extended, SEL is not left

a. A next component exists The previous component gets OST assigned and
extended, SEL is removed

sanity-pfl 23d

b. No next component The previous component gets OST assigned and
extended to EOF, SEL is removed (a-la append)

sanity-pfl 23b 23c

c. No next component, the previous component
is a repeated one

sanity-pfl 23f

Also, the tests sanity-pfl 21* have DOM in the first component.

Performance

Large IO Performance

Default (non-SEL layout) to confirm there is no regression in the base performance.

Set of SEL performance tests to show the performance dependancy on the extension size.

The large IO tests are to be done with the following settings

SEL-layout with a very small extension size, consider 64M / 1 stripe as the extreme case. The test is supposed to demonstrate the
maximum performance penalty with small SEL space comparing with the similar layout PFL files.
SEL-layout with a small extension size, consider 512M / 1 stripe. The test is supposed to demonstrate an intermediate user
performance penalty with SEL regions comparing with the similar layout PFL files.
SEL-layout with a real-life extension size, consider 4G / 1 stripe (i.e. if a component has 10 stripes, -z 40G is to be set). The test is
supposed to demonstrate an real-life performance penalty with SEL regions comparing with the similar layout PFL files.

where the file size is 40G size, stripe count is 1.

The proposed SEL layout is lfs setstripe -E -1 -z <ext_size> <file>.

The proposed PFL layout for comparison is lfs setstripe -E <ext_size> -E < 4 * ext_size> -E -1 <file>.

The following set of large IO tests is to be done with the above settings: dd, IOR SSF and FPP sequential IO, test with 1 thread, with 8
threads, 32 clients x 8 threads.

The following set of the lustre settings are chosen for our test system:

<max_rpcs_in_flight> 256
<max_dirty_mb> 1024
<max_pages_per_rpc> 1024
<read_ahead_step> 4
<max_read_ahead_mb> 1024
<max_read_ahead_per_file_mb> 1024

3. Set of SEL performance tests to show the performance dependancy on the stripe count.

The stripe count is to be set to 1, 8, 16, 32 and the same set of other parameters as above with extension size 64M / 1 stripe.

4. IO performance with MD load in background.

mdtest is running endlessly in background; IOR performance is measured and should not degraded under metadata load; the test parameters
as well as the SEL layouts are the same as described above.

Small IO performance

The small IO tests are to be done with the following settings

Write by 1k at offsets N*<ext_size> - it will result in 1 small write per each extension size, i.e. each write will initiate the SET
extension procedure. This test checks the SEL extension procedure does not consume a significant amount of time and the
performance is close to a base PFL layout.
The same as (1), but the OSTs are low on space. This test checks the attempt to repeat the component which fails and the following

2.

3.

1.

2.

forced extension does not take extra time and the performance results are still the same as in (1).
The same as (1), but with different stripe count to show it does not change the performance much.

The proposed SEL layout is lfs setstripe -E -1 -z 100M <file>.

The proposed PFL layout is lfs setstripe -E -100M -E 200M -E 300M ... -E ${N}00M -E -1 <file>.

The OST's reserved_mb_low should be probably decreased so that the set of to be written data would not run to real ENOSPC on OSTs.

The following set of large IO tests is to be done with the above settings: [TBD]

MD performance

Base MD performance tests
File creation/removal with SEL layout to confirm there is no regression against the base performance: mdsrate, mdtest.
MD performance with IO load in background
IOR is running endlessly in background, many clients, many thread; mdtest performance is measured and should not degraded
under IO load; the official set of parameters which shows the maximal mdtest parameters is to be used;

Scale tests

Repeat "Large IO Performance" with a larger set of OSTs. The amount of clients to be used to load the OSTs in full. The test is supposed to
demonstrate the MDT scalability with a larger number of clients / layout updates.

New Feature Stress Tests

There are 2 pools of OSTs; IOR writes the set of data which exceeds the pool1 size. 2 runs:

The default SEL layout is: component1 is on pool1, component2 is SEL, component3 is on pool2. The IOR succeeds without
ENOSPC.
A similar PFL layout is: component1 is on pool1, component2 is on pool2 ; The IOR fails with ENOSPC.

Due to a high latency of informing MDS about the free space on OSS nodes, the parameters of these tests have to be accurately set up.

a. The OST's reserved_mb_low >= 2 * ost_write_speed * update_interval

b. The OST's reserved_mb_low >= amount of IO threads * SEL extension_size

Where:

update_internal is 5sec by default and cannot be controlled through procfs for now;
ost_write_speed is the write speed of an individual OST

reserved_mb_low and are to be tuned to confirm the above formula works well and the system does not run intoreserved_mb_high
ENOSPC condition with SEL.

The test is to be run on:

medium size cluster (up to 32 clients); could be done in VM; the goal is to demonstrate the feature is above to reach its goals;
large scale cluster (hundreds / thousands clients); real HDD or/and SDD cluster;

Racer

The script racer/file_create.sh has option to enable SEL layout: RACER_ENABLE_SEL

Interoperability

Lustre clients prior to Lustre 2.13 will be still able to perform the IO to existing SEL files. However, due to a lack or support in utilities, the old
clients will not be able to create SEL files nor parse the existing SEL layouts.

Lustre 2.13 clients that try to create a SEL file on an older server will receive an error.

Lustre MDS server prior to Lustre 2.13 will not be able to open SEL files.

Feature interaction

HSM

SEL files must be archived, released and restored. Restored SEL files will have the same number of components and extent ranges as the
original file.

LFSCK

The LFSCK tool shall correctly process files with a SEL layout, detect and correct filesystem corruption or implementation defects.

Snapshot

A snapshot shall be taken of a file system with SEL files in it and where the file system has a default SEL file layout specified. The snapshot
shall preserve the composite file layout if the snapshot is mounted and files are retrieved.

Distributed Name Space (DNE)

Stress tests with SEL default layout are to be created under remote directories and striped directories.

DOM

SEL files are to be created with DOM component at the beginning of the file.

Repeat the tests from the Regression Test sections with the following SEL layout:

SEL layout with DOM: lfs setstripe -E 1M -L mdt -E -1 -z64M ROOT_DIR

More specific interaction of SEL and DOM is already covered by the "New Feature Regression Tests" section.

Documentation

Man pages for , were modified to include the additional functionality for the SEL feature. Also, man pageslfs-setstripe lfs-getstripe, lfs-find
were added for the new API methods:

, llapi_layout_extension_size_get llapi_layout_extension_size_set.

	Self Extending Layout Test Plan

