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File System Checking
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§ Used to ensure a file system’s metadata is consistent

§ Used in the event where the file system is left in an incorrect state

• Checks whether file system tree is connected

• Checks whether file and directory metadata is not corrupt

• Checks whether all data blocks are accounted for

• System crash or buggy file system

• Error in the storage hardware (ex. bit-flip)

-



File System Checking (cont.)
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§ FSCK 

§ Come in online and offline forms

§ Most common form is offline

§ Historically notorious for long runtimes

• Offline checking requires the storage partition/device to be unmounted and offline

• Online checking can be done while the partition/device is mounted and in use

• Can potentially incur large downtimes 

• Hassle for system admins
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Storage Evolution and Modern Consistency Mechanisms
§ Modern storage technology has evolved since hard drives

§ Modern crash consistency and recovery mechanisms have been developed

§ Dense flash storage (MLC) is prone to cell wear and bit corruption

§ Offline File System Checking is still relevant

§ Lots of room for improvement in terms of file checking performance

• Higher bandwidth (ex. Intel Optane NVMe 1-2GB/s)

• Lower latencies (ex. Intel Optane NVMe 10-30 µs)

• Journaling

• Copy on Write

• Erasure Coding

Cannot detect silent bit corruption

Reconstruction and re-sharding quite
time consuming



pFSCK
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§ Parallelism for file system checkers at a fine granularity (e.g. inodes)

§ Ensures correctness through logical reordering

§ Adapts to file system configurations (varying file/directory count)

§ Shows up to 2.7x improvement over vanilla FSCK and 1.8x – 8x improvement over XFS

• Delay dependent checks until dependencies are resolved

• Dynamic Thread Scheduler balances work in an optimal manner



Challenges on Parallelizing File System Checking
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§ Isolating global data structures and contexts among the file system checker

§ Overcome dependencies across multiple passes

§ Enabling effective CPU utilization and exploiting disk bandwidth
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Traditional EXT Disk Layout
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1. Super Block: Stores general information about the file system
2. Group Descriptor: Bitmap/table locations and file/directory count

3. Block Bitmap: Bitmap of used blocks
4. Inode Bitmap: Bitmap of used inodes

5. Inode Table: Table of inode structures

6. Data Blocks: Blocks that store file data including extended file/directory metadata
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File System Checker and Repair
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§ Linux EXT file systems use FSCK

§ Checks and fixes any inconsistencies

§ Consists of 5 logical passes

§ Scans through all file system metadata

§ Checks the integrity of file system metadata objects

§ Checks consistency across all metadata objects

§ Builds own view of a consistent file system in order to repair the actual file system  



File System Checker Passes
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Super
Block

Group
Desc.

Block
Bitmap

Inode
Bitmap Inode Table Data Blocks

Pass 1. Check Inodes (file and directory inodes)

Pass 2. Check Directories

Pass 3. Check Connectivity

Pass 4. Check Reference Counts

Pass 5. Check Cylinder Groups



Prior Works
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parallelization limited 
to coarse granularity § FSCK: Parallelizes file system checking across disks/partitions

§ XFS_Repair : Parallelizes file system checking across allocation groups

Example: XFS

a
Allocation Group #1 Allocation Group #2 Allocation Group #3 Allocation Group #4

§ Allocation Groups (AG) are independent structures that store files and data

§ File system aging may cause utilization imbalance 

§ Checking run time will be limited to the most heavily utilized AG

§ AG imbalance limits threading benefits



Prior Works (cont.)
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requires extensive 
modification to 
the file system

requires complete 
overhaul of file 
system checker

§ FFsck (FAST ‘13): 

§ ChunkFS (HotDep ‘06): 

§ SQCK (OSDI ‘08): 

• Modifies file system and rearranges metadata blocks 

• Provides minimal seek times for faster scanning

• Partitions file system into smaller isolated groups

• Allowed groups to be repaired in isolation

• Uses declarative queries and databases for consistency checks

• Allows for more expressive fixes with comparable run times
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Evaluating Current FSCK Performance

13

§ System:

§ Methodology: 

• Dual Intel® Xeon® Gold 5218 @ 2.30GHz

• 64 GB of memory 

• 1TB NVMe Flash Storage

1. Varying file count (file size constant at 12kb, created across 5 directories)

2. Varying directory count (1 file per directory, each file 24kb)

• FSCK against 800 GB file systems of varying configurations



File Count Sensitivity
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§ Runtime scales linearly with file count

§ As file count increases, directory entry count increases, increasing directories pass runtime
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Directory Count Sensitivity
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§ Runtime scales linearly with directory count

§ Effective runtime significantly longer than a file-intensive file system

§ Directories pass runtime dominates due to directory block checksumming
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Take Aways and Research Questions
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§ Current file system checker runtime scales linearly with increase in file system utilization 

§ Current file system checkers do not exploit modern storage performance

§ How to speed up file system checking and repair without compromising correctness?

§ How to adapt for different file system configurations? 

• Passes done sequentially

• Fail to support fine-grained parallelism

• ex. file-intensive vs directory-intensive



pFSCK Key Ideas
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§ Parallelize file system checking at finer granularity (ex. inodes, directories) 

1. Overlap as much independent logical checks within each pass

2. Overlap as much logical checks across passes

3. Reduce contention on shared data structures

4. Efficient management of work for threads across passes



Outline
Introduction

Background

Motivation

pFSCK Design

Evaluation

Summary

Conclusion

18



Serial Execution in FSCK
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Inodes Pass

Inode List

§ Serially checks file system metadata (ex. inodes)

§ Updates global data structures to generate view of file system based on traversed metadata 

§ Generates work for the next pass (ex. list of directory block)
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pFSCK Data Parallelism
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Inodes Pass

Inode List

§ Split metadata within each pass into smaller groups

§ Uses a pool of threads to check in parallel and generate intermediate lists

§ Aggregate lists and repeat
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Challenge: Buffers and Intermediate Data Structures
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Blocks 
Bitmap

Global Data Structures

Directory 
Blocks

Directories Pass Connectivity Pass

§ All data and buffers needed for execution stored in FSCK

§ Naïve solution: serialize accesses across threads using locks

§ Reduces concurrency

Inodes Pass

Inode List

111100

• Block buffers are used to read in blocks from the disks

• Block cache stores recently read blocks

• Problem context stores information to give contextual details in the event of an issue

Block Buffer

Problem Context

Block Cache



pFSCK Approach: Per-thread Contexts
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Blocks 
Bitmap

Global Data Structures

Directory 
Blocks

111100

§ Solution: Introduce per-thread contexts

§ Each thread context has its own buffers, cache, and problem context

§ Enables threads to operate in parallel

Inodes Pass
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Problem Context

Block Cache

Thread 1 Context 

Thread 2 Context 

Block Buffer
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Limitations of pFSCK Data Parallelism 
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Inodes Pass
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Directories Pass Connectivity Pass

Block Buffer

Problem Context

Block Cache

Thread 1 Context 

Thread 2 Context 

Block Buffer

Problem Context

Block Cache

§ Not all global data structures can be isolated

§ Synchronization unavoidable without complete redesign of FSCK

§ Limits concurrency in each pass

• ex. block bitmap needed to check for consistency between inodes



pFSCK Pipeline Parallelism
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§ Idea: Hide data parallelism synchronization bottlenecks

§ Solution: Allow multiple passes to operate in parallel

§ Increase metadata being checked across passes instead of a single pass



pFSCK Pipeline Parallelism
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§ Turn each pass into independent flows of execution

§ Use per pass queues to store inputs from previous pass

§ Have multiple thread pools for each pass

§ Continuously feed subsequent passes with metadata

§ Do not wait for previous pass to complete (speculatively carry out future checks)

Inodes Pass Directories Pass

Inode List

To Connectivity 
Pass

Thread Pool Thread Pool



Pipeline Parallelism: Dependent Check Problem 
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§ Some logical checks depend on information generated by the previous passes

§ For Example: Directory Relationships in Directory Checking Pass (Pass 2)

§ Naïve Solution: Wait for dependent information to be generated from prior pass

• Check: any subdirectory must have a reference to the current directory

• Cannot be done until subdirectory’s inode has been checked

• Stalls working thread indefinitely

Foo

BarBar
..



Inodes Pass

Delaying Dependent Checks

27

§ Solution: Delay dependent checks

§ Ensures checks are eventually carried out for correctness

§ Prevents threads from stalling

§ Note: Still various edge cases in later passes that are currently investigated

Directories Pass

Thread Pool

Delayed Checks

• Mark intermediate tasks to be carried out later

• Execute checks once previous pass had finished

Thread Pool Thread Pool



Pipeline Parallelism: Work Imbalance Problem 
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§ Issue: Work imbalance between the passes

§ Not straight forward how many threads to assign to each pass

§ Examples:

Inodes Pass Directories Pass

Inode List
Thread Pool Thread Pool

1. File-intensive file systems mainly will have more inodes to check

Many Inodes needed
to be checked

More threads than
needed to check
directory blocks



Solution: Dynamic Thread Scheduling
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§ Scheduler thread periodically samples the task queue lengths of each pass

§ Calculates total amount of work that needs to be done with normalized weights

§ Calculates proportion of work for each pass

§ Calculates thread distribution and redistributes threads

§ Allows pFSCK to adapt to different file system configurations with differing metadata densities

• Calculate proportions of work among the passes and redistribute threads

Inodes Pass Directories Pass

Inode List

Thread Pool Thread Pool

Scheduler Thread

Total Work =

4 8

Inodes Proportion =
Dirs Proportion =
Inode Threads =

Total Threads = 3

Dir Threads =

12

0.33
0.66

1
2



FSCK-Opt
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§ Optimization for serial FSCK in addition to pFSCK

§ Repeated string localization for every metadata object – high overheads

§ Solution: cache translations, instead of re-localizing for every metadata object

§ We reported this and it has since been fixed within the current release of e2fsprogs

• dcigettext() from the glibc library 

• To give contextual information in preferred language when an inconsistency is detected



pFSCK with file system errors
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§ When errors are detected threads serialize

§ Thread that detected error, fixes error if possible. 

§ Once fixes are complete, all threads continue in parallel

§ Even with errors, pFSCK outperforms FSCK

§ More exhaustive testing in progress
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Evaluation Goals
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§ Does pFSCK’s fine grained parallelism improve performance?

§ Can pFSCK adapt to various file system configurations?

• ex. file-intensive vs. directory-intensive file system



Methodology
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§ System:

§ Tools:

• Dual Intel® Xeon® Gold 5218 @ 2.30GHz

• 64GB of DDR memory 

• 1TB NVMe Flash Storage

• FSCK (e2fsprogs release v1.44.4)

• XFS_Repair (xfsprogs release 4.9.0)

• pFSCK (proposed system)



35

§ pFSCK’s data parallelism compared to vanilla FSCK and XFS_repair

Evaluation: Data Parallelism

Name Description

FSCK Vanilla FSCK for EXT file systems

FSCK-opt Serial, but optimized FSCK

pFSCK[datapara] Proposed file system checker with various thread counts

XFS_Repair XFS file system checker with various thread counts



Evaluation: Data Parallelism
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§ Data parallelism alone improves performance over vanilla FSCK by up to 2x 

§ Data parallelism improves performance over XFS_Repair by up to 1.8x – 8x with same thread count

§ Currently analyzing XFS performance variation on NVMe for different images

§ pFSCK does not scale past 4 threads (contention on shared structures)
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Evaluation: Data Parallelism
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§ Data parallelism and optimizations alone improves performance over vanilla FSCK by up to 1.4x 

§ Data parallelism alone improves performance over XFS by up to 1.7.x

§ pFSCK does not scale past 4 threads (contention on shared structures)
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§ How effective is pipeline parallelism compared to just data parallelism?

§ Compare pFSCK with data parallelism vs pFSCK with data and pipeline parallelism

Evaluation: Pipeline Parallelism

Name Description

pFSCK[datapara] only data parallelism enabled

pFSCK[datapara+pipeline-halfhalf] data and pipeline parallelism with half the threads 
checking inodes and half the threads checking 
directories

pFSCK[datapara+pipeline-bestcase] data and pipeline parallelism with static best case 
thread assignment



Evaluation: Pipeline Parallelism

39

§ Pipeline parallelism improves performance by up to 1.3x  over data parallelism 

§ Improves performance by up to 2.5x over the vanilla FSCK
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§ How effective dynamic thread scheduler at optimizing thread assignments?

§ Compare best manual pFSCK configuration to pFSCK with scheduler

Evaluation: Dynamic Thread Scheduler

Name Description

pFSCK[datapara+pipeline-halfhalf] data and pipeline parallelism with half the threads 
checking inodes and half the threads checking 
directories

pFSCK[datapara+pipeline-bestcase] Best manual pFSCK thread configuration

pFSCK[datapara+pipeline+scheduler] Automatic pFSCK thread configuration
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§ Dynamic thread scheduler was able to find an optimal thread assignment

§ Scheduler has more impact as the number of threads increase

§ Improves runtime by up to 1.1x over data and pipeline parallelism
§ Improves runtime by up to 2.7x over vanilla FSCK

Evaluation: Dynamic Thread Scheduler
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Summary
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§ pFSCK provides fine grained parallelism for file system checking

§ Data parallelism allows more metadata to be checked at a time

§ Pipeline parallelism overcomes data parallelism bottlenecks

§ Dynamic thread scheduler adapts to file system configuration

§ pFSCK is provides 2.7x performance over vanilla FSCK
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Conclusion
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§ Fine grained parallelism is required for lower checking and repair runtimes

§ Fined grained parallelism is needed to exploit modern storage capabilities

§ Plans to adapt pFSCK for online checking

§ Apply pFSCK approaches to other file system checkers


