
Accelerating Filesystem Checking and
Repair with pFSCK

David Domingo, Sudarsun Kannan, Kyle Stratton
Rutgers University Department of Computer Science

File System Checking

1

§ Used to ensure a file system’s metadata is consistent

§ Used in the event where the file system is left in an incorrect state

• Checks whether file system tree is connected

• Checks whether file and directory metadata is not corrupt

• Checks whether all data blocks are accounted for

• System crash or buggy file system

• Error in the storage hardware (ex. bit-flip)

-

File System Checking (cont.)

2

§ FSCK

§ Come in online and offline forms

§ Most common form is offline

§ Historically notorious for long runtimes

• Offline checking requires the storage partition/device to be unmounted and offline

• Online checking can be done while the partition/device is mounted and in use

• Can potentially incur large downtimes

• Hassle for system admins

3

Storage Evolution and Modern Consistency Mechanisms
§ Modern storage technology has evolved since hard drives

§ Modern crash consistency and recovery mechanisms have been developed

§ Dense flash storage (MLC) is prone to cell wear and bit corruption

§ Offline File System Checking is still relevant

§ Lots of room for improvement in terms of file checking performance

• Higher bandwidth (ex. Intel Optane NVMe 1-2GB/s)

• Lower latencies (ex. Intel Optane NVMe 10-30 µs)

• Journaling

• Copy on Write

• Erasure Coding

Cannot detect silent bit corruption

Reconstruction and re-sharding quite
time consuming

pFSCK

4

§ Parallelism for file system checkers at a fine granularity (e.g. inodes)

§ Ensures correctness through logical reordering

§ Adapts to file system configurations (varying file/directory count)

§ Shows up to 2.7x improvement over vanilla FSCK and 1.8x – 8x improvement over XFS

• Delay dependent checks until dependencies are resolved

• Dynamic Thread Scheduler balances work in an optimal manner

Challenges on Parallelizing File System Checking

5

§ Isolating global data structures and contexts among the file system checker

§ Overcome dependencies across multiple passes

§ Enabling effective CPU utilization and exploiting disk bandwidth

Outline
Introduction

Background

Motivation

pFSCK Design

Evaluation

Summary

Conclusion

6

Traditional EXT Disk Layout

7

1. Super Block: Stores general information about the file system
2. Group Descriptor: Bitmap/table locations and file/directory count

3. Block Bitmap: Bitmap of used blocks
4. Inode Bitmap: Bitmap of used inodes

5. Inode Table: Table of inode structures

6. Data Blocks: Blocks that store file data including extended file/directory metadata

Super
Block

Group
Desc.

Block
Bitmap

Inode
Bitmap Inode Table Data Blocks

(1) (2) (3) (4) (5) (6)

Boot
Sector

Block Group 1 Block Group 2 …… Block Group N

Partition

File System Checker and Repair

8

§ Linux EXT file systems use FSCK

§ Checks and fixes any inconsistencies

§ Consists of 5 logical passes

§ Scans through all file system metadata

§ Checks the integrity of file system metadata objects

§ Checks consistency across all metadata objects

§ Builds own view of a consistent file system in order to repair the actual file system

File System Checker Passes

9

Super
Block

Group
Desc.

Block
Bitmap

Inode
Bitmap Inode Table Data Blocks

Pass 1. Check Inodes (file and directory inodes)

Pass 2. Check Directories

Pass 3. Check Connectivity

Pass 4. Check Reference Counts

Pass 5. Check Cylinder Groups

Prior Works

10

parallelization limited
to coarse granularity § FSCK: Parallelizes file system checking across disks/partitions

§ XFS_Repair : Parallelizes file system checking across allocation groups

Example: XFS

a
Allocation Group #1 Allocation Group #2 Allocation Group #3 Allocation Group #4

§ Allocation Groups (AG) are independent structures that store files and data

§ File system aging may cause utilization imbalance

§ Checking run time will be limited to the most heavily utilized AG

§ AG imbalance limits threading benefits

Prior Works (cont.)

11

requires extensive
modification to
the file system

requires complete
overhaul of file
system checker

§ FFsck (FAST ‘13):

§ ChunkFS (HotDep ‘06):

§ SQCK (OSDI ‘08):

• Modifies file system and rearranges metadata blocks

• Provides minimal seek times for faster scanning

• Partitions file system into smaller isolated groups

• Allowed groups to be repaired in isolation

• Uses declarative queries and databases for consistency checks

• Allows for more expressive fixes with comparable run times

Outline
Introduction

Background

Motivation

pFSCK Design

Evaluation

Summary

Conclusion

12

Evaluating Current FSCK Performance

13

§ System:

§ Methodology:

• Dual Intel® Xeon® Gold 5218 @ 2.30GHz

• 64 GB of memory

• 1TB NVMe Flash Storage

1. Varying file count (file size constant at 12kb, created across 5 directories)

2. Varying directory count (1 file per directory, each file 24kb)

• FSCK against 800 GB file systems of varying configurations

File Count Sensitivity

14

§ Runtime scales linearly with file count

§ As file count increases, directory entry count increases, increasing directories pass runtime

0

50

100

150

10 20 30 40 50

R
un

tim
e

(s
ec

on
ds

)

File Count (millions)

Inodes Pass Directories Pass Connectivity Pass Ref Counts Pass Cylinders Pass

Directory Count Sensitivity

15

§ Runtime scales linearly with directory count

§ Effective runtime significantly longer than a file-intensive file system

§ Directories pass runtime dominates due to directory block checksumming

0
100
200
300
400
500
600

5 10 15 20 25

R
un

tim
e

(s
ec

on
ds

)

Directory Count (millions)

Inodes Pass Directories Pass Connectivity Pass Ref Counts Pass Cylinders Pass

Take Aways and Research Questions

16

§ Current file system checker runtime scales linearly with increase in file system utilization

§ Current file system checkers do not exploit modern storage performance

§ How to speed up file system checking and repair without compromising correctness?

§ How to adapt for different file system configurations?

• Passes done sequentially

• Fail to support fine-grained parallelism

• ex. file-intensive vs directory-intensive

pFSCK Key Ideas

17

§ Parallelize file system checking at finer granularity (ex. inodes, directories)

1. Overlap as much independent logical checks within each pass

2. Overlap as much logical checks across passes

3. Reduce contention on shared data structures

4. Efficient management of work for threads across passes

Outline
Introduction

Background

Motivation

pFSCK Design

Evaluation

Summary

Conclusion

18

Serial Execution in FSCK

19

Inodes Pass

Inode List

§ Serially checks file system metadata (ex. inodes)

§ Updates global data structures to generate view of file system based on traversed metadata

§ Generates work for the next pass (ex. list of directory block)

Blocks
Bitmap

Global Data Structures

Directory
Blocks

Directories Pass Connectivity Pass

111100

Directory Block List

pFSCK Data Parallelism

20

Inodes Pass

Inode List

§ Split metadata within each pass into smaller groups

§ Uses a pool of threads to check in parallel and generate intermediate lists

§ Aggregate lists and repeat

Blocks
Bitmap

Global Data Structures

Directory
Blocks

Directories Pass Connectivity Pass
111100

Directory Block List

Challenge: Buffers and Intermediate Data Structures

21

Blocks
Bitmap

Global Data Structures

Directory
Blocks

Directories Pass Connectivity Pass

§ All data and buffers needed for execution stored in FSCK

§ Naïve solution: serialize accesses across threads using locks

§ Reduces concurrency

Inodes Pass

Inode List

111100

• Block buffers are used to read in blocks from the disks

• Block cache stores recently read blocks

• Problem context stores information to give contextual details in the event of an issue

Block Buffer

Problem Context

Block Cache

pFSCK Approach: Per-thread Contexts

22

Blocks
Bitmap

Global Data Structures

Directory
Blocks

111100

§ Solution: Introduce per-thread contexts

§ Each thread context has its own buffers, cache, and problem context

§ Enables threads to operate in parallel

Inodes Pass

Inode List

Directories Pass Connectivity Pass

Block Buffer

Problem Context

Block Cache

Thread 1 Context

Thread 2 Context

Block Buffer

Block Buffer

Problem Context

Block Cache

Limitations of pFSCK Data Parallelism

23

Blocks
Bitmap

Global Data Structures

Directory
Blocks

111100

Inodes Pass

Inode List

Directories Pass Connectivity Pass

Block Buffer

Problem Context

Block Cache

Thread 1 Context

Thread 2 Context

Block Buffer

Problem Context

Block Cache

§ Not all global data structures can be isolated

§ Synchronization unavoidable without complete redesign of FSCK

§ Limits concurrency in each pass

• ex. block bitmap needed to check for consistency between inodes

pFSCK Pipeline Parallelism

24

§ Idea: Hide data parallelism synchronization bottlenecks

§ Solution: Allow multiple passes to operate in parallel

§ Increase metadata being checked across passes instead of a single pass

pFSCK Pipeline Parallelism

25

§ Turn each pass into independent flows of execution

§ Use per pass queues to store inputs from previous pass

§ Have multiple thread pools for each pass

§ Continuously feed subsequent passes with metadata

§ Do not wait for previous pass to complete (speculatively carry out future checks)

Inodes Pass Directories Pass

Inode List

To Connectivity
Pass

Thread Pool Thread Pool

Pipeline Parallelism: Dependent Check Problem

26

§ Some logical checks depend on information generated by the previous passes

§ For Example: Directory Relationships in Directory Checking Pass (Pass 2)

§ Naïve Solution: Wait for dependent information to be generated from prior pass

• Check: any subdirectory must have a reference to the current directory

• Cannot be done until subdirectory’s inode has been checked

• Stalls working thread indefinitely

Foo

BarBar
..

Inodes Pass

Delaying Dependent Checks

27

§ Solution: Delay dependent checks

§ Ensures checks are eventually carried out for correctness

§ Prevents threads from stalling

§ Note: Still various edge cases in later passes that are currently investigated

Directories Pass

Thread Pool

Delayed Checks

• Mark intermediate tasks to be carried out later

• Execute checks once previous pass had finished

Thread Pool Thread Pool

Pipeline Parallelism: Work Imbalance Problem

28

§ Issue: Work imbalance between the passes

§ Not straight forward how many threads to assign to each pass

§ Examples:

Inodes Pass Directories Pass

Inode List
Thread Pool Thread Pool

1. File-intensive file systems mainly will have more inodes to check

Many Inodes needed
to be checked

More threads than
needed to check
directory blocks

Solution: Dynamic Thread Scheduling

29

§ Scheduler thread periodically samples the task queue lengths of each pass

§ Calculates total amount of work that needs to be done with normalized weights

§ Calculates proportion of work for each pass

§ Calculates thread distribution and redistributes threads

§ Allows pFSCK to adapt to different file system configurations with differing metadata densities

• Calculate proportions of work among the passes and redistribute threads

Inodes Pass Directories Pass

Inode List

Thread Pool Thread Pool

Scheduler Thread

Total Work =

4 8

Inodes Proportion =
Dirs Proportion =
Inode Threads =

Total Threads = 3

Dir Threads =

12

0.33
0.66

1
2

FSCK-Opt

30

§ Optimization for serial FSCK in addition to pFSCK

§ Repeated string localization for every metadata object – high overheads

§ Solution: cache translations, instead of re-localizing for every metadata object

§ We reported this and it has since been fixed within the current release of e2fsprogs

• dcigettext() from the glibc library

• To give contextual information in preferred language when an inconsistency is detected

pFSCK with file system errors

31

§ When errors are detected threads serialize

§ Thread that detected error, fixes error if possible.

§ Once fixes are complete, all threads continue in parallel

§ Even with errors, pFSCK outperforms FSCK

§ More exhaustive testing in progress

Outline
Introduction

Background

Motivation

pFSCK Design

Evaluation

Summary

Conclusion

32

Evaluation Goals

33

§ Does pFSCK’s fine grained parallelism improve performance?

§ Can pFSCK adapt to various file system configurations?

• ex. file-intensive vs. directory-intensive file system

Methodology

34

§ System:

§ Tools:

• Dual Intel® Xeon® Gold 5218 @ 2.30GHz

• 64GB of DDR memory

• 1TB NVMe Flash Storage

• FSCK (e2fsprogs release v1.44.4)

• XFS_Repair (xfsprogs release 4.9.0)

• pFSCK (proposed system)

35

§ pFSCK’s data parallelism compared to vanilla FSCK and XFS_repair

Evaluation: Data Parallelism

Name Description

FSCK Vanilla FSCK for EXT file systems

FSCK-opt Serial, but optimized FSCK

pFSCK[datapara] Proposed file system checker with various thread counts

XFS_Repair XFS file system checker with various thread counts

Evaluation: Data Parallelism

36

§ Data parallelism alone improves performance over vanilla FSCK by up to 2x

§ Data parallelism improves performance over XFS_Repair by up to 1.8x – 8x with same thread count

§ Currently analyzing XFS performance variation on NVMe for different images

§ pFSCK does not scale past 4 threads (contention on shared structures)

0

20

40

60

80

100

FSCK FSCK-opt pFSCK[datapara]-4 pFSCK[datapara]-8 pFSCK[datapara]-16

R
un

tim
e

(s
ec

on
ds

)

File-Intensive File System
Inodes Pass Directories Pass Connectivity Pass Ref Counts Pass Cylinders Pass

Evaluation: Data Parallelism

37

§ Data parallelism and optimizations alone improves performance over vanilla FSCK by up to 1.4x

§ Data parallelism alone improves performance over XFS by up to 1.7.x

§ pFSCK does not scale past 4 threads (contention on shared structures)

0
50

100
150
200
250
300
350
400
450

FS
CK

XFS
_R

ep
air

FS
CK-o

pt

XFS
_R

ep
air

-4

pF
SC

K[d
ata

pa
ra

]-4

XFS
_R

ep
air

-8

pF
SC

K[d
ata

pa
ra

]-8

XFS
_R

ep
air

-1
6

pF
SC

K[d
ata

pa
ra

]-1
6

R
un

tim
e

(s
ec

on
ds

)

Directory-Intensive File System

Inodes Pass Directories Pass Connectivity Pass Ref Counts Pass Cylinders Pass XFS

38

§ How effective is pipeline parallelism compared to just data parallelism?

§ Compare pFSCK with data parallelism vs pFSCK with data and pipeline parallelism

Evaluation: Pipeline Parallelism

Name Description

pFSCK[datapara] only data parallelism enabled

pFSCK[datapara+pipeline-halfhalf] data and pipeline parallelism with half the threads
checking inodes and half the threads checking
directories

pFSCK[datapara+pipeline-bestcase] data and pipeline parallelism with static best case
thread assignment

Evaluation: Pipeline Parallelism

39

§ Pipeline parallelism improves performance by up to 1.3x over data parallelism

§ Improves performance by up to 2.5x over the vanilla FSCK

0

20

40

60

80

100

2 4 8 16

R
un

tim
e

(s
ec

on
ds

)

Thread Count

File-Intensive File System

pFSCK[datapara] pFSCK[datapara+pipeline-halfhalf] pFSCK[datapara+pipeline-bestcase]

40

§ How effective dynamic thread scheduler at optimizing thread assignments?

§ Compare best manual pFSCK configuration to pFSCK with scheduler

Evaluation: Dynamic Thread Scheduler

Name Description

pFSCK[datapara+pipeline-halfhalf] data and pipeline parallelism with half the threads
checking inodes and half the threads checking
directories

pFSCK[datapara+pipeline-bestcase] Best manual pFSCK thread configuration

pFSCK[datapara+pipeline+scheduler] Automatic pFSCK thread configuration

41

§ Dynamic thread scheduler was able to find an optimal thread assignment

§ Scheduler has more impact as the number of threads increase

§ Improves runtime by up to 1.1x over data and pipeline parallelism
§ Improves runtime by up to 2.7x over vanilla FSCK

Evaluation: Dynamic Thread Scheduler

0

10

20

30

40

50

2 4 8 16

R
un

tim
e

(s
ec

on
ds

)

Thread Count

File-Intensive File System

pFSCK[datapara+pipeline-halfhalf] pFSCK[datapara+pipeline-bestcase] pFSCK[datapara+pipeline-scheduler]

Outline
Introduction

Background

Motivation

pFSCK Design

Evaluation

Summary

Conclusion

42

Summary

43

§ pFSCK provides fine grained parallelism for file system checking

§ Data parallelism allows more metadata to be checked at a time

§ Pipeline parallelism overcomes data parallelism bottlenecks

§ Dynamic thread scheduler adapts to file system configuration

§ pFSCK is provides 2.7x performance over vanilla FSCK

Outline
Introduction

Background

Motivation

pFSCK Design

Evaluation

Summary

Conclusion

44

Conclusion

45

§ Fine grained parallelism is required for lower checking and repair runtimes

§ Fined grained parallelism is needed to exploit modern storage capabilities

§ Plans to adapt pFSCK for online checking

§ Apply pFSCK approaches to other file system checkers

