Enhanced Adaptive Compression in Lustre IPCC for Lustre

Anna Fuchs

anna.fuchs@informatik.uni-hamburg.de

Research Group Scientific Computing Department of Informatics, Universität Hamburg

2017-06-20

Der Forschung | der Lehre | der Bildung

Introduction	Design	
●00	000	00

Problem description

- Growing gap between technologies; I/O is a bottleneck
- Use computational power to compensate other deficits
- Compression can reduce storage costs and improve throughput

Compression algorithms

- Single stream still insufficient with faster networks
- Simplified: profitability depending on network speed

$$c.speed - \frac{c.speed}{c.ratio} > \textit{network speed} \Rightarrow c.speed > \frac{\textit{network speed}}{1 - \frac{1}{c.ratio}}$$

ntroduction Desi	ign l	
000 OOO		00

Compression benefits

- Optimal use of compression pays off after couple of days
- Estimated mean residence time of data on servers > compression amortization time

	Design ●00	Evaluation and Adaptivity
Infrastructure		

- Network benefits from client-side compression
- Focus on ZFS due to its built-in support for compression

	Design ⊙●○	
Client		

- Parallel compression of chunks on the client
- Mix compression per chunk is possible
- Logical (and uncompressed) chunks aligned to ZFS's records
- Still sufficient compression ratio with smaller chunks (Iz fast)
 - 8 x 128 KiB chunks compared to 1 MiB stripe
 - ${\approx}5\%$ lower ratio and ${\approx}5\%$ faster compression

Challenges

- Readahead
 - · Gaps caused by compression prevent readahead
 - Smart integration into block structure of ZFS to solve it
- Read-modify-write
 - Expands to read-decompress-modify-compress-write
 - Intensive case study to determine common access patterns
 - Optimizations and balancing of block sizes and client and/or server de-/compression
- Compatibility to ZFS
 - Reuse ZFS's infrastructure as much as possible
 - Allow ZFS decompress externally compressed data
 - Enable correct data handling without Lustre

	Evaluation and Adaptivity •0

Goals

- Make compression a universal feature of complete Lustre stack
- Enabling by default without performance degradation
- Transparent but controllable
- Adaptive decisions or explicit control
 - Whether: yes/no
 - Where: client/server
 - How: algorithm
 - When: threshold of data size
 - What: specific files or directories
 - ...
- Take system's state into account
 - Static configuration: network speed, number of clients/servers/CPUs, etc.
 - Dynamic: system load, input data, etc.

	Evaluation and Adaptivity O●
· .	

Project

- Research project IPCC-L Hamburg
- Schedule June 2016 January 2019
- Currently working on infrastructure
- Intel support, first prototype to be published soon
- Contributions and related work
 - Iz4 in kernel
 - ZFS autocompression PR pending
 - ZFS infrastructure
 - Community spread in academia
- Welcome to meet and talk to us
- anna.fuchs@informatik.uni-hamburg.de
- Research poster at ISC'17 [Substanz 1+2, Forum]
- Student Cluster Competition [A-1452] Universität Hamburg