
Backup and restore of encrypted files
HLD

Revision 0.3

January 26th, 2023

Revision History
The following is a chronological history of changes made to this document.

Revision Date Reason for change Author

0.1 16 August
2022

Initial version Sebastien Buisson

0.2 21 October
2022

Comments from Andreas Dilger
integrated.

Sebastien Buisson

0.3 26 January

2023

Update security.encdata xattr

format

Sebastien Buisson

Table of Contents
Revision History.. 2

Introduction ... 4

Requirements Description ... 4

High-Level Diagrams... 5

Data Flow ... 6

Backup/restore at backend file system level ... 7

Backup phase ... 7

Restore phase .. 7

Backup/restore at Lustre client level ... 8

Backup phase ... 8

Restore phase .. 8

Lustre/HSM on encrypted files .. 8

Backup phase ... 9

Restore phase .. 9

Encrypted files movement between file systems without decrypt/encrypt 9

Tool for development/testing .. 10

Security implications .. 10

Documentation .. 10

Introduction
Lustre’s client-side encryption provides a special directory for users to safely store sensitive
files. The purpose of this feature is to protect data in transit between clients and servers and
protect data at rest. Client-side encryption uses the fscrypt library with v2 encryption
policies, which allow filesystems to support transparent encryption of file and directories.

Client-side encryption encrypts all file data and file names on the clients, meaning only
encrypted data will be sent over the network and stored on the target file system. Without
the correct encryption key, regular files cannot be opened or truncated, yet file metadata
(such as timestamps and file ownership) may be read. Directories may be listed, in which
case the filenames will be listed in an encoded form derived from their ciphertext. Client-
side Encryption originally landed to Lustre 2.14.0, with content only encryption support. File
name encryption originally landed to Lustre 2.15.0.

Requirements Description
The need for backup and restore of encrypted files arose, just like we would do for normal
files. While backup and restore at the backend device level is always an option and works
independently of OST and MDT content, the situation differs with other backup/restore
strategies.

The use cases we would like to support are:

- Backup and restore at the backend file system level, with OSTs and MDTs hosting
Lustre encrypted files;

- Backup and restore of encrypted files at the Lustre client level.
By extension, we would like to be able to use Lustre/HSM on encrypted files, and also have
some capabilities like moving Lustre encrypted files between file systems without
decrypting and then re-encrypting.

The core principle we need to retain and apply to all these backup/restore methods is that
we must not make any clear text copy of encrypted files. This means backup/restore must
be carried out without the encryption key.

The first challenge we have to address is to get access to raw encrypted files without the
encryption key. By design, fscrypt does not allow such kind of access, and file systems in
general would not let read or write files flagged as encrypted if the encryption key is not
provided. A workaround must be found for access to both raw encrypted content, and raw
encrypted names.

The second challenge is to determine the clear text size of encrypted files. Without the
encryption key, the apparent size corresponds to raw content. This is fine as we want to
backup the whole raw content, but the clear text file size must be backed up as well in order
to properly restore encrypted files later on. This information cannot be inferred by any
other means.

The third challenge is to get access to the encryption context of files and directories. By
design, fscrypt does not expose this information, internally stored as an extended attribute

but with no associated handler. However, making a backup of the encryption context is
crucial because it gives access to the per-file key used to actually encrypt file content.
It is also a non-trivial operation to restore the encryption context. Indeed, fscrypt imposes
that an encryption context can only be set on a new file or an existing but empty directory.

High-Level Diagrams

Backup/restore at backend file system level

Backup/restore at Lustre client level

Lustre/HSM on encrypted files

Encrypted files movement between file systems without decrypt/reencrypt

Data Flow
The common interface to all use cases is going to be a special extended attribute named
security.encdata, containing:

- encoding method used for binary data.
Assume name can be up to 255 chars.
- number of bytes that the clear text file data is smaller than the reported file size.
This value is at most 4095 (set to 0 for dirs).
- encryption context
40 bytes for v2 encryption context.
- encrypted name
256 bytes max

In order to improve portability if we need to change the on-disk format in the future, the
content of the security.encdata xattr is expressed as ASCII text with a "key: value" YAML
format. As encryption context and encrypted file name are binary, they need to be encoded.
So the content of the security.encdata xattr is:

{ encoding: base64url, delta: 3012, enc_ctx: YWJjZGVmZ2hpamtsbW
 5vcHFyc3R1dnd4eXphYmNkZWZnaGlqa2xtbg==, enc_name: ZmlsZXdpdGh2Z
 XJ5bG9uZ25hbWVmaWxld2l0aHZlcnlsb25nbmFtZWZpbGV3aXRodmVyeWxvbmdu
 YW1lZmlsZXdpdGh== }

Because base64 encoding has a 33% overhead, this gives us a string of at most 699
characters.

Note that in case an encrypted file’s name is not encrypted (null mode for name
encryption), the content of the enc_name field is the encoding of the not-encrypted name.

This extended attribute is not shown when listing xattrs, it is only expose when fetched
explicitly.

Backup/restore at backend file system level

Backup phase
Lustre Operations Manual describes in section 18.3 “Backing Up an OST or MDT (Backend
File System Level)” the way to proceed in the standard case. This procedure basically
consists in mounting MDT or OST targets as ldiskfs, and then rely on the tar utility to
create a backup. In this scenario, tar is accessing the mounted target without the encryption
key.
Lustre encrypted files must have the proper encryption flag set at the ldiskfs level, so
that it is possible for tar to identify them. We propose to modify the tar utility to make it
“Lustre encryption aware”. When detecting ldiskfs encrypted files, tar needs to
explicitly fetch the security.encdata extended attribute, and store it along with the file.
Fetching this extended attribute will internally trigger in ldiskfs a mechanism responsible
for gathering the required information. Tar also needs to specify the O_FILE_ENC |
O_DIRECT flags to read raw data without the encryption key.
On an MDT target, file size is not relevant, so the corresponding field in the
security.encdata extended attribute will be set to 0. Encryption context needs to be
included, as well as the raw encrypted name. The name given to the backed-up file is going
to be the critical-encoding of the encrypted file name.
On an OST target, file size is a valuable information, as well as the “dummy” fscrypt
encryption context set. But the encrypted name is meaningless here, so the enc_name field
is set to the encoding of the OST object.

Restore phase
Lustre Operations Manual describes in section 18.4 “Restoring a File-Level Backup” the way
to proceed in the standard case. This procedure basically consists in mounting MDT or OST
targets as ldiskfs, and then rely on the tar utility to extract a previously created tarball to
the ldiskfs file system. In this scenario, tar is accessing the mounted target without the
encryption key.
When tar restores the security.encdata extended attribute, this will internally trigger in
ldiskfs a mechanism responsible for extracting the required information, and setting it
accordingly. tar also needs to specify the O_FILE_ENC | O_DIRECT flags to write raw data
without the encryption key.

https://doc.lustre.org/lustre_manual.xhtml#backup_fs_level
https://doc.lustre.org/lustre_manual.xhtml#backup_fs_level
https://doc.lustre.org/lustre_manual.xhtml#backup_fs_level.restore

To create a valid ldiskfs file with proper encryption context and encrypted name, we can
imagine a mechanism where the file with the critical-encoded name is created with the
O_TMPFILE flag. That would allow setting the security.encdata extended attribute on this
invisible file, before atomically linking it to the namespace with the correct encrypted name.

Backup/restore at Lustre client level
The method to backup and restore files from a Lustre client also leverages the tar utility.
Similarly to the backup/restore use case at the backend file system level detailed above, we
are considering the use of a “Lustre encryption aware” tar. In this scenario, tar is accessing
the Lustre file system from a client without the encryption key, in order to avoid making a
clear text copy of encrypted files.

Backup phase
When detecting Lustre encrypted files, tar needs to explicitly fetch the security.encdata
extended attribute, and store it along with the file. Fetching this extended attribute will
internally trigger in llite a mechanism responsible for gathering the required information.
Tar also needs to specify the O_FILE_ENC | O_DIRECT flags to read raw data without the
encryption key. The name of the backed-up file is the encoded+digested form returned by
fscrypt.

Restore phase
The tar utility is used to extract a previously created tarball to the Lustre file system. When
tar restores the security.encdata extended attribute, this will internally trigger in llite a
mechanism responsible for extracting the required information, and setting it accordingly.
Tar also needs to specify the O_FILE_ENC | O_DIRECT flags to write raw data without the
encryption key.

tar will use truncate to set the correct clear text size on restored encrypted files. That will
need to be an encryption-key free truncate, implemented in llite to just set the size.

To create a valid encrypted file from client side with proper encryption context and
encrypted name, we can imagine a mechanism where the file with the encoded+digested
name is created from client side with the O_TMPFILE flag. That would allow setting the
security.encdata extended attribute on this invisible file, before atomically linking it to
the namespace with the correct encrypted name.

Lustre/HSM on encrypted files
Lustre/HSM can work with different copy tools, depending on the nature of the HSM being
interfaced. Below we consider the use of the POSIX copytool provided with Lustre,
lhsmtool_posix, that will need to be modified to properly handle encrypted files. In this
scenario, lhsmtool_posix is accessing the Lustre file system from a client without the
encryption key, in order to avoid making a clear text copy of encrypted files.

Backup phase
When detecting Lustre encrypted files, lhsmtool_posix needs to explicitly fetch the
security.encdata extended attribute, and store it along with the file in the HSM. Fetching
this extended attribute will internally trigger in llite a mechanism responsible for gathering
the required information. lhsmtool_posix also needs to specify the O_FILE_ENC |
O_DIRECT flags to read raw data without the encryption key.
In the “normal” HSM case, archived and released files still have their inode on the MDT. The
action to archive just reads raw data and writes it to HSM. This is a file content operation
only. Encryption context and file name do not need to be handled, they are kept on the
MDT inode.
In the Disaster Recovery HSM case, the whole files can be recreated from HSM. So this
needs careful backup of encryption context and raw encrypted file name along with clear
text file size and raw encrypted content.

Restore phase
When lhsmtool_posix restores the security.encdata extended attribute, this will
internally trigger in llite a mechanism responsible for extracting the required information,
and setting it accordingly. lhsmtool_posix also needs to specify the O_FILE_ENC |
O_DIRECT flags to write raw data without the encryption key.
In the “normal” HSM case, archived and released files still have their inode on the MDT. The
action to restore just fetches raw data from HSM and writes it into the Lustre file. This is a
file content operation only. Encryption context and file name do not need to be handled,
they are already correct on the MDT inode.
In the Disaster Recovery HSM case, the whole file is recreated from HSM. The import action
creates the inode on the MDT, in released state. This needs to properly set the encryption
context and raw encrypted name from the security.encdata extended attribute. To do
so, we can imagine a mechanism where the file with the encoded+digested name is created
from client side with the O_TMPFILE flag. That would allow setting the security.encdata
extended attribute on this invisible file, before atomically linking it to the namespace with
the correct encrypted name. The restore action then fetches raw data from HSM and writes
it into the Lustre file. This also needs to use truncate to set the correct clear text size on the
restored encrypted file. That will need to be an encryption-key free truncate, implemented
in llite to just set the size.

Encrypted files movement between file systems without decrypt/encrypt
Copying or moving encrypted files between file systems is normally possible only with the
encryption key. Reading on one end triggers decryption, and then writing on the other end
consists in re-encrypting. The per-file encryption keys on both ends are generated
independently so necessarily differ.

To copy or move encrypted files between file systems without decrypting and then re-
encrypting, one possible scenario is to leverage the enhanced tar utility described in section
“Backup/restore at Lustre client level”, used without the encryption key. For this to work,
the tar backup/restore must be done with the topmost encrypted directory, as all other
encryption keys are inherited from there.

Another possibility would be to use a dedicated lfs command, see below.

Tool for development/testing
To ease development and testing, we propose to create a new lfs sub-command. The
purpose of this new command is to manually backup and restore encrypted files, and
leverage all Lustre internal mechanisms previously mentioned. The point is not having to
modify existing tools like tar and lhsmtool_posix, but to create a simple command that
we completely control.

lfs fscrypt read <path to Lustre file> -d <external dir>
lfs fscrypt write <path to backed up file> -d <dir>

- read action
Reads file at path, and writes into dir, with all xattrs plus security.encdata extended
attribute if encrypted. Name of output file is no-key encoded name if encrypted.

- write action
Writes file from path in Lustre directory dir. Restores all xattrs, and internally sets
encryption context, name and size from security.encdata extended attribute.

Security implications
Doing backup and restore of encrypted files must not compromise their security. This is the
reason why we want to carry out these operations without the encryption key. It avoids
making a clear text copy of encrypted files.
The security.encdata extended attribute contains the encryption context of the file or
directory. This has a 16-byte nonce (per-file random value) that is used along with the
master key to derive the per-file key thanks to a KDF function. But the master key is not
stored in Lustre, so it is not backed up as part of the scenarios described above, which
makes the backup of the raw encrypted files safe.
The process of restoring encrypted files must not change the encryption context associated
with the files. In particular, setting an encryption context on a file must be possible only
once, when the file is restored. And the newly introduced capability of restoring encrypted
files must not give the ability to set an arbitrary encryption context on files.

Documentation
The new lfs command needs to be documented, with a dedicated man page and in the
Lustre Operations Manual.
Sections 18.3 “Backing Up an OST or MDT (Backend File System Level)” and 18.4 “Restoring
a File-Level Backup” of the Lustre Operations Manual must be updated to mention the
capability to backup/restore encrypted files.

https://doc.lustre.org/lustre_manual.xhtml#backup_fs_level
https://doc.lustre.org/lustre_manual.xhtml#backup_fs_level.restore
https://doc.lustre.org/lustre_manual.xhtml#backup_fs_level.restore

	Revision History
	Introduction
	Requirements Description
	High-Level Diagrams
	Data Flow
	Backup/restore at backend file system level
	Backup phase
	Restore phase

	Backup/restore at Lustre client level
	Backup phase
	Restore phase

	Lustre/HSM on encrypted files
	Backup phase
	Restore phase

	Encrypted files movement between file systems without decrypt/encrypt
	Tool for development/testing

	Security implications
	Documentation

